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ABSTRACT

A novel method is described for surface profile extraction based
on morphological processing of multiple range sensor data. The
approach taken is extremely flexible and robust, in addition to be-
ing simple and straightforward. It can deal with arbitrary num-
bers and configurations of range sensors as well as synthetic ar-
rays obtained by moving a relatively small number of sensors.
The method has the intrinsic ability to suppress spurious readings,
crosstalk, and higher-order reflections, and process multiple reflec-
tions informatively. The performance of the method is investigated
by analyzing its dependence on surface structure and distance, sen-
sor beamwidth, and noise on the time-of-flight measurements. The
essential idea of this work—the use of multiple range sensors com-
bined with morphological processing—can be applied to different
physical modalities of range sensing of vastly different scales and
in many different areas. These may include radar, sonar, robotics,
optical sensing and metrology, remote sensing, ocean surface ex-
ploration, geophysical exploration, and acoustic microscopy.

1. INTRODUCTION

An inexpensive, yet effective and reliable approach to machine
perception is to employ multiple simple range sensors coupled
with appropriate data processing. This paper deals with the de-
termination of arbitrary surface profiles, typically encountered in
mines, rough terrain, or underwater. The approach is completely
novel in that morphological processing is applied to range data in
the form of an arc map, representing angular uncertainties, to re-
construct the profile of anarbitrarily curved surface. Although it is
possible to interpret this method as a spatial voting scheme where
cells or pixels receive local support from their neighbors, we find
it more appropriate to look at it as a nonlinear signal reconstruc-
tion (inverse) problem where morphological processing is used to
extract reinforced features in the arc map.

The method is extremely flexible and can easily handle arbi-
trary sensor configurations, as well as synthetic arrays. In con-
trast, approaches based on geometrical or analytical modeling are
often limited to elementary target types or simple sensor config-
urations [1, 2, 5]. A commonly noted disadvantage of range sen-
sors is the difficulty associated with handling spurious readings,
crosstalk, higher-order, and multiple reflections. The proposed
method is capable of effectively suppressing the first three of these,
and informatively processing echoes returning from surface fea-
tures further away than the nearest (i.e. multiple reflections).

Despite the generality of the method, for concreteness, we
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Fig. 1: Transmitter and receiver are (a) the same device, (b) sepa-
rate devices.

consider simple range sensors that measure time-of-flight (TOF)
t�, which is the round-trip travel time of the pulse between the
sensor and the object. Given the speed of transmissionc, the range
r can be easily calculated fromr = ct�=2. Although such de-
vices return accurate range data, typically they cannot provide di-
rect information on the angular position of the object from which
the reflection was obtained: All that is known is that the reflection
point lies on a circular arc of radiusr (Fig. 1(a)). More generally,
when one sensor transmits and another receives, it is known that
the reflection point lies on the arc of an ellipse whose focal points
are the transmitting and receiving elements (Fig. 1(b)). The arcs
are tangential to the surface at the actual point(s) of reflection.

Most commonly, the large beamwidth of the sensor is accepted
as a device limitation that determines the angular resolving power
of the system, and the reflection point is assumed to be along the
line-of-sight. In our method, circular or elliptical arcs, represent-
ing the uncertainty of the object location, are drawn. By com-
bining the information inherent in a large number of such arcs,
angular resolution far better than that implied by the beamwidth is
obtained.

2. MORPHOLOGICAL PROFILE EXTRACTION

Structured sensor configurations such as linear and circular ar-
rays as well as irregularly configured sensors have been considered
in [3], where the method is also generalized to moving sensors and
synthetic arrays.

To illustrate the method, Fig. 2(a) shows a surface whose pro-
file is to be determined by using an irregular sensor configuration.
A large number of arcs can be obtained with a reasonably small



0 100 200 300 400 500

100

200

300

400

500

                                        x (pixels)

 y
 (

pi
xe

ls
)

0 100 200 300 400 500

100

200

300

400

500

                                        x (pixels)

 y
 (

pi
xe

ls
)

0 100 200 300 400 500

100

200

300

400

500

                                        x (pixels)

 y
 (

pi
xe

ls
)

0 100 200 300 400 500

100

200

300

400

500

                                        x (pixels)

 y
 (

pi
xe

ls
)

(a) (b)

(c) (d)

Fig. 2: (a) The actual surface and the sensors, (b) the arc map
obtained with 17 sensors, each of45� beamwidth, (c) the result of
n = 6 thinning, (d) the fitted curve (solid line) and the original
surface (dashed line).

number of sensors because each sensor can receive pulses trans-
mitted from all the others, provided a reflection point lies in the
joint sensitivity region for that sensor pair. Fig. 2(b) shows the
arcs obtained. Although each arc represents considerable uncer-
tainty as to the angular position of the reflection point, neverthe-
less one can almost extract the actual curve shown in Fig. 2(a) by
visually examining the arc map in Fig. 2(b). Each arc drawn is ex-
pected to be tangential to the surface at least at one point. At these
actual reflection point(s), several arcs will intersect with small an-
gles at nearby points on the surface. The many small segments of
the arcs superimposed in this manner coincide with and cover the
actual surface, creating the darker features in Fig. 2(b) that reveal
the surface profile. The remaining parts of the arcs, not actually
corresponding to any reflections and simply representing the an-
gular uncertainty of the sensors, remain more sparse and isolated.
Similarly, those arcs caused by higher-order reflections, crosstalk,
and noise also remain sparse and lack much reinforcement.

In this study, morphological operators are used to eliminate
the sparse and isolated segments in the arc map, leaving behind
the mutually reinforcing segments that reveal the solid structure
of the original surface. Erosion, dilation, opening, closing, and
thinning are widely used morphological operations to accomplish
tasks such as edge detection, skeletonization, segmentation, tex-
ture analysis, enhancement, and noise removal in image process-
ing [4]. Most applications involve processing of conventional bi-
nary or gray-scale images, or range images where the range infor-
mation is coded in the gray-levels of the image [7]. The present
approach is completely novel in that morphological processing is
applied to range measurements in the form of an arc map, repre-
senting angular uncertainties, to reconstruct the surface.

Morphological operations basically consist of a set of simple
rules to modify images. A simple algorithm forerosionis as fol-
lows: If all eight neighbors of a pixel with value one equal one,
that pixel preserves its value, otherwise its value is set equal to
zero. This way, the image will be eroded or shrunk in all direc-

tions by one pixel. On the other hand,dilation is used to fatten an
image: all eight neighbors of those image pixels which originally
equal one are set equal to one.

Thinning is a generalization of erosion with a parametern
varying in the range1 � n � 8. In this case, it is sufficient for
anyn neighbors of a pixel to equal one in order for that pixel to
preserve its value of one. The flexibility that comes with this pa-
rameter enables one to make more efficient use of the information
contained in the arc map. Thus,pruning anderosionare the two
extremes of thinning withn = 1 andn = 8.

The result of applyingn = 6 thinning to the arc map shown
in Fig. 2(b) is presented in Fig. 2(c). As a last step, a least-squares
polynomial fit is obtained to compactly represent the surface pro-
file. The curve fitted to the thinned map in Fig. 2(c) is displayed in
Fig. 2(d). A a root-mean-square absolute error measure

E =

q
1

N

PN

i=1
[p(xi)� y(xi)]2 is introduced, comparing the

final polynomial fit with the actual curve. HereN is the total num-
ber of columns in the map matrix,p(xi) are the samples of the
fitted polynomial, and�2y = 1

N
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2 is
the variance of the actual surface profiley(xi). The result of ap-
plying various morphological operators to the arc map in Fig. 2(b)
are summarized in Table 1.

morphological operation E(pixels) tCPU(s)

thinning(n = 1 : pruning) 20.59 1.21
thinning(n = 3) 12.53 1.07
thinning(n = 5) 9.19 0.99
thinning(n = 6) 2.75 0.98
thinning(n = 7) 5.29 0.97
thinning(n = 8 : erosion) 11.75 0.96
closing & erosion 11.50 5.64

Table 1: Results of various morphological operations.

A detailed study of the performance of different sensor config-
urations and morphological operations has been performed. Struc-
tured arrays are often preferred in theoretical work for simplic-
ity and ease of analysis, whereas the method presented here can
handle irregular arrays equally easily. Although the problem of
optimal complementary sensor placement is a subject for future
research, the large number of simulations performed indicate that
it is preferable to work with irregular arrays, since the randomized
vantage points of the sensors tend to complement each other better
than structured ones. The arcs may be accumulated by any num-
ber of randomly moving and rotating sensors, perhaps mounted on
mobile robots as in swarm robot applications. Another potential
area of application of the irregular configuration is in array signal
processing where the individual sensor positions of a regular array
have been perturbed by the wind or waves.

The method has been tested with real sonar data, experimen-
tally obtained from a Nomad 200 mobile robot, initially using
smooth cardboard surfaces. An example is shown in Fig. 3 for
which additional results are provided in Table 2. Even though the
method was initially developed and demonstrated for specularly
reflecting surfaces, subsequent tests with Lambertian surfaces of
varying roughness have indicated that the method also works for
rough surfaces, with errors slightly increasing with roughness.
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Fig. 3: (a) The actual surface. (b) The arc map and the sensors.
(c) Result of erosion(n = 8) followed by pruning(n = 1).
(d) Part (a) superimposed with the fitted curve.

morphological operation E (pixels) tCPU (s)

thinning(n = 1 : pruning) 4.98 0.41
thinning(n = 2) 4.84 0.41
thinning(n = 3) 4.07 0.40
thinning(n = 4) 3.28 0.39
thinning(n = 5) 2.58 0.37
thinning(n = 6) 1.96 0.36
thinning(n = 7) 1.63 0.35
thinning(n = 8 : erosion) 1.42 0.34
erosion & pruning(n = 1) 1.41 0.39
erosion & thinning(n = 2) 1.50 0.39

Table 2: Experimental results for the surface in Fig. 3(a).

3. PERFORMANCE OF THE METHOD

Although the method is applicable to arbitrary surfaces [3], to in-
vestigate the performance of the method, sinusoidal surfaces have
been considered whose parameters can be systematically varied.
Simulations have been undertaken on sinusoidal surfaces of vary-
ing amplitude and periodicity, located at varying distances from
the sensor array. These parameters are illustrated in Fig. 4(a). The
elements of the sensor array are distributed in the box
[�35; 440]� [0; 90], with their average distance fromy = 0 being
32.7 pixels.

We investigate the dependence of the error on amplitude, pe-
riod, surface distance, sensor beamwidth, and measurement un-
certainty. For this purpose, the sinusoid shown in Fig. 4(a), with
A = 30, T = 125, andL = 200 pixels, is taken as a reference
and these parameters are individually varied around the reference
values. The arc map generated is shown in part (b) of the same
figure. The result ofn = 3 thinning, which gives the minimum er-
ror for this example, is given in part (c). The resulting error when

various morphological operators are applied to the same arc map
are summarized in Table 3. Finally, the result of curve fitting, and
the comparison with the actual surface are given in part (d).

First, the period is varied by keeping the amplitude and the
surface distance constant at the reference values given above.E

increases with decreasing period as expected (Fig. 5(a)). For peri-
ods shorter than 100 pixels, the error increases significantly. The
minimum radius of curvatureRmin is a useful indicator of the dif-
ficulty of extracting the profile: features with smaller radii of cur-
vature are more difficult to accurately determine. For this reason,
the relation betweenRmin and the period of the sinusoid is also
plotted in Fig. 5(b). It can be concluded that the limiting value of
the error is more or less independent ofT .

In the next step, the amplitude is varied while keeping the pe-
riod and the distance constant at the reference values.E increases
with increasing amplitude (Fig. 5(c)), since increasingA reduces
Rmin. Rmin is plotted as a function of the amplitude in Fig. 5(d).
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Fig. 4: (a) The actual surface and the parametersA; T; andL,
(b) the arc map obtained with an array of 35 sensors, each of30�

beamwidth, (c) the result ofn = 3 thinning, (d) the fitted curve
(solid line) and the original surface (dashed line).

To get a better understanding of the relation between the error
and curvature, the results in Fig. 5 are rearranged to generate a plot
of E versusRmin (Fig. 6). As expected, decreasing the curvature
(or increasingRmin) results in lowerE . The fact that the solid
and dashed lines (which represent varyingT andA respectively)
follow each other closely, suggests that what really matters is not
the individual values ofT andA, but the value ofRmin.

Next, the distance to the surface is varied whileA andT are
kept constant at their reference values.E increases asL increases
beyond 250 pixels (Fig. 7(a)). Because the surface shape does not
change, the curvature remains constant. Details about the process-
ing involved to generate Fig. 7(a) are presented in Table 4. Since
the number of arc points obtained strongly depends onL, and
the most suitable morphological operation depends strongly on the
density of arc points, the morphological procedure best suited to
each value ofL has been employed in constructing Fig. 7(a). (In
addition to the alternatives shown in Table 3,n = 6; 7; 8 thin-
ning, and the application of no morphological processing at all
have been considered.) For a given beamwidth, when the surface



morphological operation E(pixels) tCPU (s)

thinning(n = 1 : pruning) 2.41 0.29
thinning(n = 2) 2.21 0.28
thinning(n = 3) 2.03 0.27
thinning(n = 4) 2.09 0.27
thinning(n = 5) 2.46 0.26
closing & pruning(n = 1) 2.61 4.59
closing & thinning(n = 3) 3.02 4.57
closing & erosion(n = 8) 3.63 4.56

Table 3: Results of various morphological operations.

is located further, the arcs become larger and uncertainty in the po-
sition of the reflection point(s) increases. In a way, the “effective”
curvature of the surface increases with increasingL, resulting in
larger errors. Geometrically, this is the same effect as perceiving a
curved object to be flatter when we are very close to it, and more
curved when further away. A distinct issue arises when the dis-
tances are very small: the arcs become very short in length and
less in number, since now sensors can detect a smaller portion of
the surface and there is less overlap between their sensitivity pat-
terns. As a result, the arc map cannot cover the whole surface.

Another important parameter is the sensor beamwidth. To in-
vestigate the effect of the sensor beamwidth, the surface parame-
ters are kept constant while the beamwidth is varied. Increasing
the beamwidth results in arcs longer in length, causing a larger
portion of each arc to be redundant. In other words, there is more
uncertainty in the position of the reflection point(s) as compared to
the case of a narrower beamwidth. As a result, the error increases
as shown in Fig. 7(b). The arcs also increase in number, and these
factors make it necessary to apply higher-n thinning to extract the
useful information. On the other hand, when the beamwidth is
very small, the arcs become very short and fewer in number, lead-

L morphological E

(pixels) operation (pixels)

100 thinning(n = 1) 2.43
150 thinning(n = 1) 2.29
200 thinning(n = 3) 2.03
250 thinning(n = 3) 6.22
300 thinning(n = 4) 22.71

Table 4: Results corresponding to Fig. 7(a).

ing to a similar situation as whenL was very small. Below a
beamwidth of15�, directly fitting a polynomial to whatever few
points are available in the arc map, without applying morphologi-
cal processing, becomes the best choice. This customization of the
applied morphological rule enables a fair comparison of the results
at all beamwidth values. Smaller beamwidths result in fewer arc
points and thus less reliable curve fits, leading to a slight increase
in the error for very small beamwidths. Best results are obtained
for a particular beamwidth (about30� in our example). The differ-
ent morphological operations applied and the resulting error val-
ues are tabulated in Table 5. Choosing beamwidths smaller than
30� does not increase the error appreciably, however using sen-
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Fig. 5: (a)E vs.T , (b)Rmin vs.T , (c) E vs.A, (d)Rmin vs.A.
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Fig. 6: E vs. Rmin. Solid dots connected by solid lines are
produced by eliminatingT from Fig. 5(a) and (b). Triangles
connected by dashed lines are produced by eliminatingA from
Fig. 5(c) and (d).

sors with smaller beamwidths may not be desirable anyhow, since
these are usually more difficult to manufacture, expensive, or en-
tail a trade-off with some other quantity. For instance, in the case
of acoustic sensors, narrower beamwidth devices must have higher
operating frequencies, which imply greater attenuation in air and
shorter operating range.

Now, we discuss the issue of choice of sampling resolution or
pixel size: There are a couple of factors that determine the accu-
racy of TOF readings in a range measurement system. One of these
factors is the operating wavelength of the ranging system. Other
sources of uncertainty in the range measurement are the thermal
noise in the receiving circuitry or the ambient noise. Given these,
it is not meaningful to choose the pixel size much smaller than the
resolving limit determined by these factors, since it would increase
the computational burden without resulting in a more accurate pro-
file determination. Thus, the pixel size should be chosen compa-
rable to the TOF measurement accuracy. Nevertheless, since the
TOF accuracy may not be known beforehand, we have examined
the cases where the noise or uncertainty is both smaller and larger
than one pixel.
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beamwidth morphological E

operation (pixels)

5� none 3.41
10� none 2.65
15� none 2.43
30� thinning(n = 3) 2.03
45� thinning(n = 5) 3.51
60� thinning(n = 5) 9.19
75� thinning(n = 6) 10.07
90� thinning(n = 7) 14.82
105� thinning(n = 8) 20.21

Table 5: Results corresponding to Fig. 7(b).

To investigate the robustness of the method to noise, zero-
mean white Gaussian noise has been added to the TOF readings.
The noise standard deviation�n is varied logarithmically to cover
a broad range of noise levels (Fig. 8). As expected, for�n smaller
than one pixel, the performance is approximately the same as for
the noiseless case. This is expected since the system has a reso-
lution of one pixel so that the effect of smaller perturbations have
an insignificant effect. The performance can be further improved
by reducing the pixel size until it becomes comparable to the TOF
measurement accuracy, at the cost of greater computation time.

The error increases significantly as�n increases beyond one
pixel (Fig. 8). Since the method relies on the mutual reinforce-
ment of several arcs to reveal the surface, larger amounts of noise
are expected to have a destructive effect on this process by moving
the various arc segments out of their reinforcing positions. Con-
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Fig. 8: E vs. noise standard deviation�n.

sequently, the arc segments which now lack each other’s mutual
reinforcement tend to be eliminated by the morphological opera-
tions. A larger proportion of the arcs is eliminated, resulting in a
loss of information characterizing the original curve. Nevertheless,
the error growth rate is not as high as might be suggested by these
arguments, and the method seems to be reasonably robust to mea-
surement uncertainty. In Fig. 8, the performance is comparable to
the noiseless case up to�n = 10 pixels. This is partly because the
least-squares polynomial fit helps eliminate some of the noise.

4. CONCLUSIONS

A novel method is described for determining arbitrary surface pro-
files by applying morphological processing to data acquired by
simple range sensors. The method is extremely flexible, versatile,
and robust, as well as being simple and straightforward. It can deal
with arbitrary numbers and configurations of sensors, including
synthetic arrays. Accuracy improves with the number of sensors
used and can be as low as a few pixels except when the radius of
the curvature is very small. The method is robust in many aspects:
it has the inherent ability to eliminate most undesired TOF read-
ings arising from higher-order reflections, crosstalk, and noise, as
well as processing multiple echoes informatively.

The CPU times for the morphological operations (when im-
plemented in the C programming language and run on a 200 MHz
Pentium Pro PC) are generally about fractions of a second [3], in-
dicating that the method is viable for real-time applications. The
method can be readily generalized to 3-D environments with the
arcs replaced by spherical or elliptical caps and the morpholog-
ical rules extended to 3-D [6]. In certain problems, it may be
preferable to reformulate the method in polar or spherical coor-
dinates. Some applications may involve an inhomogeneous and/or
anisotropic medium of propagation. It is envisioned that the method
could be generalized in such cases by constructing broken or non-
ellipsoidal arcs.
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