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ABSTRACT

This paper discusses one solution technique for an optimisa-
tion problem involving nonuniform linear array (NLA) ge-
ometry. This NLA design problem seeks an optimal geome-
try from the class of fully-augmentablearrays (ie. those with
a complete set of intersensor differences) created to support
the generalised spatial smoothing (GSS) algorithm, whose
aim is to resolve the directions-of-arrival (DOA’s) of some
number of fully correlated signals. This problem is iden-
tified as an integer multicriteria optimisation (MO) prob-
lem. Presented results indicate that significant improve-
ments in DOA estimation accuracy may be achieved by such
optimised geometries compared with uniform or minimum-
redundancy arrays.

1. BACKGROUND

Modern array signal processing applications place great de-
mands on the underlying antenna array geometry to deliver
high performance. The history of major developments in ar-
ray geometry design mirrors the history of achievements in
numerical optimisation. As early as the 1940’s, the pioneer-
ing contributions of Dolf [8], and Woodward and Lawson
[21] in array design were formulated as the solution to op-
timisation problems, and each successive breakthrough in
mathematical programming has been closely followed by
its associated application to array design.

During these early years, only conventional single an-
tennas (“dishes”) were implemented in practice, and hence
optimisation efforts at first concentrated on the current dis-
tribution function. Later, when the first antenna arrays were
assembled, it was immediately realised that the geometric
distribution of individual sensors along a line (linear arrays)
or across some area (planar arrays) was crucial to the opti-
misation process as well.

The first attempts to optimise array geometry considered
conventional beamforming. While these problems were for-
mulated in terms of integer programming, later develop-
ments in dynamic programming were used to find solutions,

such as in the work of Skolnik, Nemhauser and Sherman
[18]. For those scientists mainly involved with radar and
communications applications, minimum beam-pattern side-
lobe level was a major goal in these optimisation studies.

After the important conjecture made by Arsac [6], who
may have been the first engineer to discuss the unique opti-
mal 4-element geometryd = [0; 1; 4; 6], Moffet [14] and
others elaborated on Arsac’s work, incorporating certain re-
sults from number theory (eg. Leech [13]). These papers
properly formulated the integer programming problem for
nonredundant and minimum-redundancy antenna array de-
sign, though strictly optimal solutions were obtained only
by exhaustive search, despite numerous studies.

After the famous publications of Burg [7] and Pisarenko
[16], it still took some time for the research community
to recognise that the minimum-redundancy criterion is ap-
propriate for NLA geometry optimisation when nonlinear
super-resolution techniques are involved (eg. [12]). Since
then, studies into the area of joint array geometry and signal
processing optimisation have continued (eg. [11]), heavily
influencing the ideology of passive direction-finding (DF)
systems.

Today, the theory of optimal geometry and processing
for DF applications is far from complete. A recently tackled
problem concerns joint optimal geometry and processing
for DF involving fully correlated sources. Standard tech-
niques involve various modifications of the spatial smooth-
ing idea, which originally applied only to a uniform linear
array (ULA) [17]. The area of joint array geometry and
signal processing design optimisation for coherent sources
was sketched in [4]. We now more fully discuss the optimi-
sation of NLA geometry with respect to embedded “partial
arrays”, in order to facilitate improved DOA estimation ac-
curacy for a given maximum number of coherent signals.

2. PARTIAL ARRAYS

Suppose that we haveM antenna sensors and wish to con-
struct the “optimal” NLA. Further suppose that the sensor



positionsd � [0; d2; d3; : : : ; dM ] are restricted to integer
values (usually measured in half-wavelength units). Here
“optimal” means allowing the most accurate DOA estimate
possible. In principle, we could use the Cram´er–Rao bound
to determine the best NLA for any given (fixed) source con-
figuration [10]; however the number of signals and their
(probably changing) angular separations area priori un-
known. We need to define the optimisation problem and
criteria from a different perspective.

We consider the DOA estimation problem for some small
pre-specified maximum number of coherent signalsm (of
arbitrary configuration) using the special class ofpartial-
array NLA geometries and the correspondinggeneralised
spatial smoothing(GSS) algorithm. While full details of
the GSS method can be found in [3, 4], the main relevant
point is that GSS delivers greater DOA estimation accuracy
for NLA’s which are rich in a variety of embedded partial
arrays. We also need to define a mathematical cost func-
tion which can be used as the basis of optimisation. Since
the signal configuration is arbitrary, we will invent a cost
function which attempts to encapsulate the overall “good-
ness” of any particular NLA for all possible signal scenar-
ios, based on the properties of the embedded partial arrays.

Let theco-sequenceof an arrayd be its set ofM �1
consecutive intersensor separations (ie. differences), while
its co-array is the sorted set ofM (M �1)=2 differences.
We define apartial array to be a group of nonuniform linear
noncontiguous sub-arrays of identical co-sequence structure
[4]. Associated with each partial array are itsmultiplicity�
(number of occurrences or instances),order ` (number of
co-sequence elements involved), and aperturea. A given
NLA will have n embedded partial arrays, with a total of
N instances. The GSS technique may be applied to a NLA
providing it yields at least one partial array of multiplicity
� � m and order̀ � m, wherem is the number of fully
correlated signals.

The following simple example of a partial array will il-
lustrate these properties. The NLA

deg = [0; 1; 5; 6; 9; 11; 12] (1)

has the co-sequence

ceg = [1; 4; 1; 3; 2; 1] (2)

in which is embedded the partial array with co-sequence
structure

c1 = [1; 5] (3)

since this co-sequence repeatedly occurs as a fixed sub-array
pattern of the original array elements as follows:

d11 = [0; 1; 6]

d12 = [5; 6; 11]

d13 = [0; 5; 6]

d14 = [6; 11; 12]:

(4)

This partial array has a multiplicity of�1 = 4. Note that
the instancesd13 andd14 exist as mirror-images (the co-
sequence order is reversed). This partial array has order
`1 = 2, and aperturea1 =

P`1
j=1 c1j = 6. The exhaustive

list of partial arrays for thedeg geometry is

c1 = [1; 5] �1 = 4 `1 = 2 a1 = 6

c2 = [1; 4] �2 = 2 `2 = 2 a2 = 5

c3 = [1; 6] �3 = 2 `3 = 2 a3 = 7

c4 = [1; 10] �4 = 2 `4 = 2 a4 = 11

c5 = [1; 11] �5 = 2 `5 = 2 a5 = 12

c6 = [5; 6] �6 = 3 `6 = 2 a6 = 11

c7 = [1; 5; 5] �7 = 2 `7 = 3 a7 = 11

c8 = [1; 5; 6] �8 = 2 `8 = 3 a8 = 12

(5)

so that the number of embedded partial arrays isn = 8, with
a total ofN =

Pn

j=1 �j = 19 instances.
At this stage, embedded partial arrays are found by ex-

haustive computer search. The set of useful partial arrays
may be found by searching over the range of valuesm �
` � M�2 and1 � c � dM�`+1, wherec is the possible
value of any partial co-sequence element. Thus the num-
ber of candidate partial arrays to be searched isO(dM�2M ).
Since this can be an extremely time-consuming process, our
searches are often conducted over a smaller range of values.

The GSS algorithm introduced in [4] consists of an ini-
tialisation step followed by local ML refinement. The ini-
tialisation step is based on thePA-MUSICapproach involv-
ing all appropriate partial arrays.

Suppose that an NLA yields a total ofN partial ar-
rays, each of multiplicity �i, order`i and apertureai (i =
1; : : : ; N ). Letyij be a(`i+1)-variate snapshot vector cor-
responding to thejth instance (j = 1; : : : ; �i) of the ith

partial array. If any instance of a partial array occurs as a
mirror-image (ie. in reverse order), then the corresponding
snapshot vector is observed by reversing the order of an-
tenna samples and taking the complex conjugate of the vec-
tor. Thus for each partial array we may define the(`i+1)�
(`i+1) partial array covariance matrix by spatial smoothing
to be

R̂i =

�iX

j=1

yij y
H
ij : (6)

Let Ĝi be the noise eigen-subspace ofR̂i, then Ĝi con-
sists of at least one eigenvector (sincem � M ). The PA-
MUSIC technique is:

find max
�

fPA(�) := min
�

NX

i=1

aHi (�) Ĝi Ĝ
H
i ai(�) (7)

whereai(�) is the(`i+1)-variate manifold (“steering”) vec-
tor which corresponds to the given partial array geometry.
Evidently this approach eliminates non-coinciding ambigu-
ities.



Thus the effectiveness of DOA estimation delivered by
GSS is directly related to the number, variety and�`a–
properties of the available partial arrays in the following
ways. Firstly, we desire a NLA which contains as many
partial arrays as possible for a givenM , preferably each
with large� and `. (Therefore neither nonredundant nor
minimum-redundancy arrays are suitable; we need to iden-
tify a new class of NLA.) Secondly, since DOA estimation
accuracy improves with increasing array aperture, the par-
tial arrays should have apertures as long as possible. Note
that if the NLA has a very large aperture, then its extreme
sparsity means very few redundancies and hence few partial
arrays, so that these two criteria are competitive. We con-
strain the solution to be a fully-augmentable array (having
no missing numbers, orgaps, in the co-array), since such an
array is inherently unambiguous [2].

The complete statement of the optimisation problem is
that for a given number of sensorsM and a given maximum
number of fully correlated signalsm whose directions are
to be estimated, we are to distribute theseM elements over
the 1–D grid of integer values to create a fully-augmentable
NLA, in the way which optimises DOA estimation perfor-
mance, a quantity which cannot be calculated but which is
approximated by trading-off the above two competitive cri-
teria.

3. OPTIMISATION METHOD

We are dealing with a so-called constrained integer mul-
ticriteria (multiple-criteria or multi-objective) optimisation
(MO) problem [9]. Since effective computational algorithms
for finding the strictly optimal solution have not yet been
developed, even for less sophisticated integer programming
problems such as minimum-redundancy optimisation, and
since an exhaustive search would be too time-consuming,
we have developed the following optimisation problem cost
functionA and three-stage optimisation approach.

Consider the simple cost function

A(d; `min; `max; cmin; cmax) =
nX

j=1

a2j (8)

which in some way incorporates both criteria, since it favours
larger partial array aperturesanda large number of different
partial arrays. (Note that the above sum is only over allsuit-
ablepartial arrays,ie. those with� � m and` � m.) By
choosing such a cost function, we have collapsed the MO
problem to a univariate optimisation problem.

In the first stage, we define the total antenna array aper-
ture by selecting an initial nonredundant array geometry
of M1 elements, for example from the lists published in
[19, 20]. A nonredundant array contains no partial arrays
at all, but has maximum aperture for a given number of

gaps. (Any nonredundant array with more than four ele-
ments must have gaps [14].) At this stage we have(M�M1)
elements remaining at our disposal to distribute optimally
amongst the vacant integer positions.

Secondly, we eliminate all gaps with the minimum pos-
sible number of elementsM2, using an exhaustive tree search
technique. This results in an (often lengthy) list of gap-free
(fully-augmentable) candidate arrays.

Thirdly, we utilise the remainingM3 = (M�M1�M2)
degrees of freedom by adding this number of elements to
each candidate geometry in turn, searching for the array that
maximises the selection criterion (cost function)A(d). For
each candidate, we conduct an integer programming search
by adding elements to vacant positions one-by-one, at each
stage simply selecting the maximum-A geometry for fur-
ther investigation. This method will find the global optimum
(of this third stage) provided that the problem is separable,
ie. that each of theM3 degrees of freedom is independent of
the other; while this is not strictly true, the small level of in-
teraction between successive introduced elements relegates
this to a second-order effect.

By itself, this would be in principle a relatively straight-
forward optimisation problem, since for a givenM ,m, M1,
`min, `max, cmin andcmax we can compute theA-optimal
NLA. However, the entire three-stage optimisation problem
should now be wrapped inside anM1-optimisation, since
our initial choice ofM1 was somewhat arbitrary.

4. EXAMPLE RESULTS

The following examples illustrate array geometry optimisa-
tion results for anM = 16 element array. The initial choice
M1 = 10 gives us the starting-point 10-element nonredun-
dant Sverdlik array [19]

d
(0)
55 = [0; 1; 6; 10;23;26;34;41;53;55] : (9)

The exhaustive tree search of stage two yields 37 candidate
gap-free geometries,each with 14 elements and 36 redun-
dancies. The integer programming maximisation of stage
three finds that of these candidates,

d
(1)
55 = [0; 1; 5; 6; 10; 23;26;34;37; 41; 44; 52; 53; 55]

(10)
is best (in the search range` = 3 andc 2 [1; 18]), since with
the addition of two sensors it yields the 16-element NLA

d55 = [0; 1; 5; 6; 8; 10; 19; 23; 26; 34;37; 41; 44; 52; 53; 55]
(11)

having the maximal cost functionA = 38467 (and 65 re-
dundancies). Thus we have partitioned ourM = 16 ele-
ments in this example byfM1 = 10; M2 = 4; M3 = 2g.
Note that this three-stage optimisation search took a few
days computing time on a modern workstation, even with



its rather modest search range. At this point, we have no
alternative but to assume that any NLA rich in partial arrays
for a restricted search setf`; cg will be similarly superior
for a more expansive set.

Indeed, Table 1(a) shows the�`-distributionand Fig. 1(a)
illustrates thea-distribution of partial arrays ford55 for the
expanded search range` 2 [3; 5] andc 2 [1; 30], whence
we findA = 99441. This array performs better than the 16-
element ULA because of the large numbers of embedded
partial arrays, each of significant aperture. The minimum-
redundancy array of comparable total aperture (M� = 58)
has 13 elements [15], so we could considerd55 to be a type
of “optimal” solution by the introduction of only three ad-
ditional elements to the minimum-redundancy structure.

A 16-element NLA with different partial array charac-
teristics is illustrated by the shorter array

d34 = [0; 1; 4; 5;8; 9; 10; 14; 15; 16; 18; 22; 23; 25; 32;34] :
(12)

Table 1(b) and Fig. 1(b) show its partial array�`a-properties.
While the maximum partial array aperture is here less than
that of d55, the number of partial arrays is much greater.
In any case, we would expectd34 to perform better than
the 16-element ULAd15. Note that the 10-element optimal
minimum-redundancy array (containing no suitable partial
arrays) has a similar aperture (M� = 36) [15], so all 480
partial array instances are created by adding six sensors.

These examples illustrate NLA geometry design com-
plementing a specific signal processing algorithm (GSS),
where apertures are maximised by redundancy minimisa-
tion and partial array distributions are optimised by creating
redundancies. The DOA estimation performance analysis
conducted in [4] has shown that the final bearing estima-
tion accuracy for GSS applied to the geometries optimised
by this method is significantly superior to the conventional
ULA geometry, using the standard spatial smoothing algo-
rithm. In that paper, a comparison of error statistics is pre-
sented for DOA estimation simulations with three sources,
using the geometriesd55, d34 and the corresponding 16-
element ULA. For this benchmarkd15, a standard spatial
smoothing technique was used with (in our nomenclature)
the single partial arrayc = [1; : : : ; 1] of order ` = 13,
which has multiplicity� = 6 (three of them mirror-images)
and aperturea = 13.

5. EXTENSIONS OF THE METHOD

It should be noted that the abovead hocprocedure to find
a close-to-optimal solution may be applied to other prob-
lems of a similar nature. Minimum-redundancy arrays, with
their contiguous co-arrays, perfectly suit interferometric or
covariance moment-based spectral (DOA) estimation meth-
ods. Some applications demand more than this single crite-
rion; eg. suppose we also wish to minimise the NLA beam

pattern sidelobe level within some angular range of the main
lobe. We may do this by starting with minimum-redundancy
arrays, introducing additional redundancies in order to de-
crease the array pattern sidelobes. Again, we have two com-
peting criteria — maximal array aperture versus minimal
maximum sidelobe levels within some range.

In fact, we may apply the same three-stage optimisa-
tion approach, simply replacing the cost functionA(d) by
the appropriate calculation of the maximum sidelobe level
within some pre-specified range. In this case, the third stage
of our approach is essentially the same as the dynamic pro-
gramming scheme of [18].

6. SUMMARY

We have considered a problem involving nonuniformly spa-
ced linear array geometry optimisation, in the context of en-
hancing the performance of modern super-resolution tech-
niques in spatial spectrum (DOA) estimation. This rigor-
ous optimisation problem has been formulated in terms of
a multicriteria integer programming problem, where effi-
cient general computational schemes to find the globally
optimum solution are unknown. The optimisation prob-
lem has been reduced to a simplified form where effective
techniques can be applied, based on dynamic programming
principles.

Optimisation efficiency in terms of spectral (DOA) esti-
mation accuracy has been analysed elsewhere [1, 5, 4], and
in most cases is found to be very high and significantly su-
perior to the conventional ULA geometry coupled with stan-
dard MUSIC-type routines.
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`
� 3 4 5 6 7 8 9

3 40 9 0 0 0 0 0

4 33 3 0 0 0 0 0

5 12 0 0 0 0 0 0

`
� 3 4 5 6 7 8 9

3 76 26 2 0 0 0 0

4 43 0 0 0 0 0 0

5 3 0 0 0 0 0 0

Table 1: Partial array distribution by multiplicity (�) and order (̀) for the NLA geometryd55 (left) andd34 (right) form = 3
and the search range` 2 [3; 5] andc 2 [1; 30].
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