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ABSTRACT

Texture analysis is an important approach in textile quality
control. Higher order statistics have been very useful in
problems where non-Gaussianity, nonminimum phase,
colored noise or nonlinearity is important. In this work,
higher order statistical analysis is applied to texture defect
detection problem.  A neighborhood definition is proposed
for cumulant lags of higher order statistics and it is used to
form higher order statistical feature sets. These higher
order statistical feature sets and some hybrid feature sets
composed of both second and higher order statistics are
used to detect defects on textural images of textile fabrics.
The results are compared with methods based only on
second order statistics both from performance and
computational complexity points of view.

1. INTRODUCTION

Quality control, designed to ensure that defective products
are not allowed to reach the customer, is a topical issue in
manufacturing. Visual inspection constitutes an important
part of quality control in industry. Until recent years, this
job has been heavily relied upon human inspectors.
Development of fast and specialized equipment, however,
has facilitated the application of image processing
algorithms to real-world industrial inspection problems.

Since in many areas the quality of a surface is best
characterized by its “texture”, texture analysis plays an
important role in the automated visual inspection of
surfaces. There have been a number of applications of
texture processing to inspection problems. Some of these
are as follows: Erçil and g]�\ÕOPD] >�@ KDYH SURSRVHG D
model based technique to detect and locate the various
kinds of defects that might be present in a given painted
surface. Jain et. al.  [2] have used the texture features
computed from a bank of Gabor filters to automatically
classify the uniformity of painted metallic surfaces. Chen
and Jain [3] have used a structural approach to defect
detection in textured images. Conners [4] has utilized
texture analysis methods to detect defects in lumber wood
automatically. Siew et.al. [5] have proposed a method for
the assessment of carpet wear. Dewaele et.al. [6] have
employed signal processing methods to detect point and
line defects in texture images.

Signal processing tools that depend on second order
statistics of textures have been used in texture  analysis for

years [7]. In recent years, there is a tendency in signal
processing to replace the methods based on second order
statistics by higher order statistics [8-9]. Higher order
statistics have been very useful in problems where non-
Gaussianity, nonminimum phase, colored noise or
nonlinearity is important. Tsatsanis and Giannakis [10]
have used higher order statistics based methods to classify
textures.

In this work, higher order statistical analysis is applied to
texture defect detection problem [11]. A neighborhood
definition is proposed for cumulant lags of higher order
statistics and it is used to form higher order statistical
feature sets. In the feature extraction part of the defect
detection scheme, the feature vectors are computed. These
vectors consist of either higher order statistical feature sets
or hybrid feature sets composed of both second and higher
order statistics. Then, in the feature analysis section, a
mahalonobis distance classifier classifies the textures as
defective or nondefective. The proposed method is tested
on real fabric images acquired in a laboratory
environment. The results are compared with methods
based only on second order statistics both from
performance and computational complexity points of
view.

2. BACKGROUND MATERIAL ON  HIGHER
ORDER STATISTICS

2.1   Definitions

In signal processing methods based on second order
statistics and/or spectrum, the phase information between
the frequency components are not considered. These
methods are blind to the phase information as well as they
can not fully describe non-Gaussian processes. Recently,
higher order statistics and spectra have been used to
accurately describe stochastic processes and to extract
phase information.

Given a set of n real random variables { }x x xn1 2, ,..., , their

joint cumulants of order r k k kn= + + +1 2 . ..  are defined as

[9]
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where

( ){ }Φ( , ,... ) exp ( ... )w w w E j w x w x w xn n n1 2 1 1 2 2= + + +      (2)

is their joint characteristic function and  E{.} denotes the
expectation operator.

If  { ( )}, , , ....X k k= ± ±0 1 2  is a real, stationary discrete-
time signal, then

m E X k X k X kn
x

n n( , ,.... ) { ( ) ( )......... ( )}τ τ τ τ τ1 2 1 1 1− −= + +   (3)

represents the nth order moment function of the signal
which depends only on the time differences
τ τ τ τ1 2 1 0 1, ,.... , , ,....n i− = ± for all i. The first order

moment m E X kx
1 = { ( )}  is the mean value of { ( )}X k

and the second order moment function

m E X k X kx
2 1 1( ) { ( ) ( )}τ τ= +  is the autocorrelation

function of{ ( )}X k .

The nth order cumulant function of a real, stationary
discrete-time signal, { ( )}X k , may be defined as:

)}k('X.,),........k('X),k('X{E),....,(c 1n11n21
x
n −− ++= τττττ     (4)

Here, the process X’(k) is the zero mean version of the
process X(k). If a process is zero mean, its second and
third order cumulants are equal to the second and third
order moments, respectively. However, for higher order
cumulants this relationship is not valid.

The definitions of higher order cumulants for real,
stationary random fields are similar to those for real,
stationary discrete-time signals. In Eqs. (3) and (4), k,τ
variables are scalars for real, stationary discrete-time
signals. If they are interpreted as vector variables,

[ ]k k k
T= 1 2,  and [ ]τ τ τ= 1 2,

T  then definitions and

equations describing higher order statistics of real,
stationary random fields are obtained.

2.2 Cumulant Lag Definition For Higher Order
Statistics

Signal processing techniques that use second order
statistical or power spectral analysis generally depend on a
number of autocorrelation lags of the signal. The number
of autocorrelation lags that are used in the analysis usually
determines the order of complexity of the analysis. From a
model based point of view, the number of autocorrelation
lags determines the order of complexity of the model
process proposed as the generator of the signal. In two-
dimensional signal processing, the autocorrelation lags
used in the analysis should be defined according to
neighborhood relations. Neighborhood relations are
defined in terms of distances between pixels of an image.
Pixels, which are equidistant from a given pixel A, are

labeled with same number. Each label number defines a
neighborhood order around pixel A [12].

Markov Random Fields (MRF) are used as model based
methods that utilize autocorrelation function. The
brightness level at a point in an image is highly dependent
on the brightness levels of the neighboring pixels. MRF
use an accurate model of this dependence and are able to
capture the local (spatial) contextual information in an
image. These models assume that the intensity at each
pixel in the image depends on the intensities of only the
neighboring pixels and use sufficient statistics instead of
the autocorrelation lags since the autocorrelation function
is an even function of the lags [1]. Neighborhood
definition of autocorrelation lags depends on distances
between two pixels; and it is not convenient for higher
order statistics since they are concerned with more than
two pixels. Tsatsanis and Giannakis [10] proposed the
third order cumulant lags in the set { c3

x ([i1 ,i2], [j1 ,j2]) , i1
= 0,  i2 = 0,1 ,  0≤  j1 ,j2 ≤ 3. But the cumulant lags in this
set are asymmetric. In order to prevent this asymmetry, a
new neighborhood definition is proposed. The
neighborhood definition of autocorrelation lags are
generalized to more than two pixels to enable the
definition to be used for statistics of all orders: The order
of neighborhood of a group of pixels may be defined as
the maximum order of neighborhoods of two-pixel
combinations in the group [11]. The proposed
neighborhood definition places the third order cumulants
and MRF under the same frame.

3. TEXTURE DEFECT DETECTION

Texture defect detection can be defined as the process of
determining the location and/or extend of a collection of
pixels in a textured image with remarkable deviation in
their intensity values or spatial arrangement with respect
to the background texture.

The main concern of this work is to use the higher order
statistics that are defined by the generalized neighborhood
relations as the new feature vectors [11]. The aim here is
to extend the second order statistical work to higher order
statistical domains as the cumulant lag features may carry
information that is useful to discriminate defective and
nondefective regions of textures. The defect detection
performances of the following feature sets of second and
higher order statistics are presented:

1. Second order statistics up to second neighborhood
(S2)

2. Second order statistics up to fifth neighborhood (S5)
3. Second order statistics up to ninth neighborhood (S9)
4. Third order statistics up to second neighborhood (T2)
5. Third order statistics up to fifth neighborhood (T5),
6. Thirty-one third order statistics proposed by [10]

(T31)
7. Fourth order statistics up to second neighborhood

(F2)



8. Second and third order statistics up to second
neighborhood (S2T2)

9. Second order statistics up to fifth neighborhood and
third order statistics up to second neighborhood
(S5T2),

10. Second order statistics up to ninth neighborhood and
third order statistics up to second neighborhood
(S9T2),

11. Second, third and fourth order statistics up to second
neighborhood (S2T2F2)

The first three feature vectors consists of only second
order statistics. The next four feature vectors consists of
various higher order statistics. Three of these are generated
using the concepts of neighborhood developed in this
study [11]; other is feature vector that consists of the
cumulant set {c3

x ([i1 ,i2], [j1 ,j2]), i1 = 0, i2 = 0,1,  0≤  j1,
j2≤ 3} proposed by Tsatsanis and Giannakis [10]. The last
four feature vectors are the hybrid feature vectors formed
by second and higher order statistics.

The proposed defect detection system consists of two
stages [11]:  (a) The feature extraction part which extracts
statistical features and (b) the detection part which is a
mahalanobis distance classifier being trained by defect-
free samples. The algorithms for each are provided below:

(a) Feature extraction
(i) An image I(n,m)  of size N x N is subdivided into M

nonoverlapping subwindows (Si) of size p x p.
(ii)  For each subwindow, second and higher order

statistics are computed and the 11 feature vectors
defined above are formed.

(iii)  Steps (i) and (ii) are repeated for all subwindows Si.

(b) Detection part
The detection part of the system consists of a learning
phase and a classification phase. These phases will be
elaborated in the subsequent parts:

Learning Phase
(i) Given k defect-free N x N images, the feature

vectors for each subwindow of the image are
calculated using the feature extraction scheme given
above. These vectors are considered as the true
feature vectors and are labeled as t i  ( Mki1 ≤≤ ).

(ii)  The mean  vector  m and  the  covariance matrix  K
are computed for the feature vectors t i .

Classification phase
(i) Given a test image, the feature vectors xi’s are

calculated using the feature extraction scheme given
above.

(ii)  The mahalanobis distance di between each feature
vector xi  and the mean vector m is calculated.

                 di = (xi -m)TK -1 (xi -m)                    (5)

Vector m and matrix K  are determined in the
learning phase.

(iii)  A subwindow Si for which di exceeds a threshold
value α is labeled as defective, else it is identified as
nondefective. i.e.,

Si =  





 >

otherwise

dif i

venondefecti

defective α

The threshold value α is determined in terms of the sample
median Dm and the upper quartile Dq of the order statistics
Di obtained by arranging distances di in ascending order as
follows:

           α = Dm + η (Dq - Dm )                             (6)

Here η is a constant determined experimentally. The
second term of summation in Eq. (6) is the confidence
interval. For an N x N sized image partitioned into M
subwindows, Dm =(DM/2+ DM/2+1)/ 2 and Dq = (D M-M/4+ D
M-M/4+1 )/2. In calculating the threshold for an image, the
median of the distances of subwindows from the learned
sample instead of mean is used since the mean will not be
a reliable measure when there are errors.

Intuitively, what the classifier does is to label subwindows
with considerable difference from the rest as defective.

The basic steps of the defect detection scheme are
summarized in Figure 1.

4. IMPLEMENTATION AND RESULTS

The defect detection scheme elaborated in the previous
section is used to detect defects in the textile products. For
this reason, 8-bit gray level images of dimension 256 x
256 taken by a Sony CCD Iris SSC-M370CE camera in a
laboratory environment are tested. Front lighting was used
during the acquisition of the images, that is the camera and
the light source were placed on the same side of the
fabrics. Each of the acquired 256 gray level images
corresponds to 8.53 cm x 8.53 cm fabric with the
resolution of 3.33 pixels/mm, which is the same resolution
that is required in the factory environment. The texture
image sample set on which the experiments are performed
contains images of eight different texture types. Set of first
texture type consists of 35 images. 19 of the images of
first texture type contain defects and 16 of them are defect
free (clean). Each of the remaining seven sets of texture
types contains four images. For each set, two images
contain defects and two images are clean. In the
experiments, the system is trained by 30 clean images and
33 defected texture images are used as the test images.
Effort is made to include various textures and different
types of defects that most frequently occur during
production (Figure 2). In the experiments, the highest
performance is obtained by using 32x32 sized
nonoverlapping subwindows. Window size chosen, in
scanning the images depends both on the resolution of the
camera used for image acquisition and the textural
properties of the fabrics as well as how localized the
defects are. The correct detection rates for all the feature
vectors are illustrated in Fig.3. The detection rates are
calculated by comparing the results of the automated
system with real locations of defected regions



Images are divided into               The feature vectors    By analysing  the feature
                 M overlapping subwin-               consisting of  second                      sets, the sub-windows are

  dows of size p x p and higher order statistics              classified as defective or
are formed for each sub-  nondefective

             window

256 gray level texture
image of size N x N                    Locations of the defect on the

                        N x N input image

       Figure 1.  Basic steps of the texture defect detection scheme.

                     
      (a)          (b)                 (c)    (d)

Figure 2. 256 gray level texture images of size 256x256, having different type of defects. a) Texture Type 1 is divided  into
subwindows of size 32x32 (Si :i=1,…,64); b) Texture type 1; c) Texture type 2; d) Texture type 3.

labeled by a trained quality inspector. Before each
defected image is processed by the automated system, a
trained quality inspector marked the defected regions of
the images. Then, the results obtained by the automated
system are compared with the locations of the defected
regions labeled by the inspector.  If ns denotes the total
number of analyzed subwindows, ndd denotes the number
of defected subwindows which are also found to be
defected by the automated system and ncc denotes the
number of nondefective (clean) subwindows which are
also found to be nondefective (clean) by the automated
system, the detection rate (DR) is calculated by the
following formula. The formula handles also the number
of false alarms, namely the number of nondefective
subwindows which are found to be defective:

         DR = ( (ndd + ncc ) / ns  ) * 100                  (7)

The results obtained can be summarized as follows: The
defect detection scheme has been tested over a set of eight
different textile textures having various defects on them.
Only for two textures of this set, the autocorrelation based
feature vectors (S9) have given the best results. The
feature vectors that consist of only third order statistics,
namely T2, T5, T31, have performed satisfactorily for
texture types 2 and 3, however for other types of texture
and defects they have not performed as good as other
feature sets. However, when third order statistics and
second order statistics are used together, in other words for
hybrid feature vectors, the results were very good for five

texture images. For one image both second order statistics
(S2) and the hybrid (S2T2, S5T2) feature sets gave 100%
detection rate (Fig. 3a). Figure 3 illustrates the
performance of different feature sets for texture types1, 2
and 3.

It is observed that the hybrid feature vectors obtained by
using second and third order statistics have increased the
defect detection rate. However the arithmetical complexity
encountered in the calculation of the hybrid feature vectors
are much greater than that of second order statistics. Table
1 illustrates the arithmetical complexity for computing
different feature vectors.

5.  CONCLUSIONS

In this study, the possibility of using higher order statistics
for defect detection of textile images has been
investigated.  Higher order statistics based methods may
be used to model textures for which second order statistics
are insufficient. As expected, for some texture types,
hybrid features that combine second and higher order
statistics have shown better performance. However, due to
the fact that the computational complexity of higher order
statistics is very high, the hybrid feature vectors are also
computationally complex. A study on the reduction of
computation complexity of higher order statistical analysis
is necessary to enable their application to texture analysis
and image processing.
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Figure 3. Performances of different feature sets over

a) texture type 1; b) texture type 2; c)  texture type 3

TABLE 1

Computational complexity of different feature sets

Feature
Sets

Additions
(x106)

Multiplications
(x106)

S2 0.66 0.33
S5 1.72 0.87
S9 3.32 1.64
T2 4.27 4.28
T5 24.26 24.31
F2 20.49 29.05
S2T2 4.93 4.62
S5T2 6.01 5.17
S9T2 7.63 6.01
S2T2F2 25.49 33.73
T31 10.22 10.24
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