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ABSTRACT

In image processing, textures are generally represented as ho-
mogeneous random fields, homogeneous meaning stationary or
second-order stationary. This paper presents a generalization of
the second-order stationarity to the second-order invariance under
a group of transforms. Some examples of interesting groups are
given. The Cholesky factorization is applied for the synthesis of
random fields showing this generalized invariance property.

1. INTRODUCTION

Random field modelling of textures is based on some invariance
property in the image, and the translation invariance of statisti-
cal features like covariance is commonly used, which leads to the
classical form of stationarity and of standard textures. The gener-
alization of this concept leads to statistical invariance (also called
homogeneity) of a random field under a group of transformations
in order to model nonstandard textures. The general formulation
includes the group of translations in the plane as a particular case.

An early work on this subject by Yaglom can be found in [1]
where the spectral decomposition for second-order homogeneous
random fields has been studied, the homogeneity being defined
with respect to group structure. The concept of invariance of a
random field under a general group composition law has also been
considered by Hannan [2] from a theoretical probabilistic point
of view. However, these general studies were not intended for
prctical applications. Concerning 1D signals, the special case of
multiplicative-invariant processes has raised some interest [3, 4, 5].
Concerning 2D signals, special attention to the applications of the
group theory to image processing has been paid by Lenz [6]. In
the texture modelling field, we have recently proposed [7] a model
for second-order scale-invariant random fields.

In this paper, we propose a general formulation for random
fields that are second-order invariant with respect to a group of
transformations in the plane.

2. G-INVARIANT RANDOM FIELDS

A standard assumption in homogeneous image modelling is tex-
ture stationarity, which can be interpreted as stating the invariance
of some probabilistic features, namely the mean value and the co-
variance functions, with respect to some family of transformations
in the plane, namely the translations in the standard case. In this
paper, we restrict ourselves to the study of second-order property
invariance (mean value and covariance function) with respect to
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groups of transformations operating onD, a subset of IR2. The
groupG of transformations operating onD is the group of all bi-
jective maps ofD.

A complex valued random fieldX, defined onD, is said to be
second-orderG–stationary if and only if :

E[X(g(u))] = E[X(u)] (1)

E[X(g(u)).X(g(v))] = E[X(u).X(v)] (2)

(∀g ∈ G, ∀(u, v) ∈ D2)
In the classical case, whenG is the group of all translations

operating onD = IR2, equation (1) implies that the mean value
functionm(u) = E[X(u)] is constant onD. In the general case,
equation (1) only implies thatm(u) = m(v) as soon as there
exists someg in G such thatv = g(u). In the sequel we shall
restrict ourselves to the case of centered processes.

3. G-ORBITS AND G-INVARIANTS

3.1. Basic notions

Group theory concepts come up with a convenient interpretation of
the relation satisfied by the covariance functionC(u, v) = E[X(u).

X(v)] of anyG–invariant random field, the covariance of which
can be shown to satisfy :

C(u, v) = C(g(u), g(v)) = C(g(u, v)) (3)

Two couples(u1, v1) and(u2, v2) are said to beG–equivalent
((u1, v1) ∼ (u2, v2)) if there exists someg ∈ G such that(u2, v2) =
g(u1, v1). This is a true equivalence relation, the equivalence
classes of which are calledG–orbits. Thus, relation (3) implies
that the covariance function is constant on eachG–orbit.

The former abstract notion of orbit set can be turned into a
practical one by introducing the concept of invariants as follows.
A function i(u, v), defined onD2 and taking its values in some set
I, is said to beG–invariant if :

(u1, v1) ∼ (u2, v2)⇒ i(u1, v1) = i(u2, v2) (4)

Furthermore,i is said to be maximalG–invariant if :

(u1, v1) ∼ (u2, v2)⇔ i(u1, v1) = i(u2, v2) (5)

It is a standard result of invariant function theory [8] that any
G–invariant is a function of any maximalG–invariant. The notion
of invariants leads to practical and efficient tools, which will be
presented and discussed through several examples in the sequel.



3.2. Examples

Usual invariants take their values inI = IRq, q ∈ IN ; asD2 it-
self is a subset of IR4, the only cases of interest areq = 1, 2 and
3. Some illustrations will be presented in the following examples
withD = IR2. In these examples, and in the sequel as well,u andv

are pixel sitesu = (x, y), v = (z, t) or vectorsu =

(
x
y

)
, v =(

z
t

)
, or complex numbersu = x + iy, v = z + it, the inter-

pretation being clear from the context.
Example 1

G1 is the group of all translations in the plane (g(u) = u +
h, h ∈ D). The following relations are equivalent to relation
(u1, v1) ∼ (u2, v2) :

∃h such thatu2 = u1 + h andv2 = v1 + h (6)

u2 − u1 = v2 − v1 (7)

u2 − v2 = u1 − v1 (8)

Thusi1(u, v) = (u − v) is a maximalG1–invariant,q = 2,
and :

C(u, v) = Γ(u− v) (9)

which corresponds to the classical second order stationarity, with
the usual properties (among them, Hermitian symmetry and pistive-
definiteness).
Example 2
G2 is the group of Euclidean motions, the group of all rota-

tions about any center in the plane(g(u) = Ru+ h, h ∈ D, R ∈
SO(2)). The following relations are equivalent to relation(u1, v1) ∼
(u2, v2) :

∃h andR such thatu2 = Ru1 + h andv2 = Rv1 + h (10)

∃R such thatu2 −Ru1 = v2 −Rv1 (11)

∃R such thatu2 − v2 = R(u1 − v1) (12)

||u2 − v2|| = ||u1 − v1|| (13)

the last relation holding since there always exists a rotation trans-
forming any vector into any other vector having the same Eu-
clidean norm. Thus,i2(u, v) = ||u−v|| is a maximalG2–invariant,
q = 1, and :

C(u, v) = Γ
(
||u− v||

)
(14)

which corresponds to the well known case of isotropy.
Example 3

Simple similar considerations leads forG3, the group of lin-
ear isometries(g(u) = Su, S ∈ O(2)), to show thatC(u, v) =

Γ
(
||u||, < u, v >, ||v||

)
.

Example 4
It can be shown in a similar way that forG4, the group of all

dilations with strictly positive ratio(g(u) = λu + b in complex
notation,λ > 0, b ∈ C|| ), C(u, v) = Γ( arg(u− v))

4. GENERALIZED TRANSLATION APPROACH

4.1. Introduction

Assume thatD itself is a group under some composition law, writ-
ten multiplicatively, as in classical stationarity, where the plane is
a group under vector translation. LetG be the group of all (gener-
alized) translations under the composition lawG = {Tu, u ∈ D},
whereTu is defined by :

Tu(v) = u.v ∀v ∈ D (15)

Thus, the following proposition can be formulated (demon-
stration is straightforward) :
Proposition (1)Assume thatG is the group of all translations op-
erating on groupD. For a positive-definite kernelC, defined on
D2, to be the covariance function of someG–stationary (centered)
random field onD, it is necessary and sufficient that there exists
some complex-valued functionΓ, defined onD, such that :

C(u, v) = Γ
(
v−1.u

)
(16)

4.2. Examples

Example 5
G5, the group of all positive scale changes defined onD =

{u = (x, y), x > 0, y > 0} by ga,b(u) = (ax, by), a > 0, b > 0,
is an example of application of proposition 1. It suffices to put

for u = (x, y) andv = (z, t), u.v = (xz, yt) (17)

to makeD a group and derive

C(u, v) = C
(

(x, y), (z, t)
)

= Γ
(
x

z
,
y

t

)
(18)

from (16).
Example 6
G6 is the group of all similarities aboutO. Adopting the com-

plex notation, the similarity aboutO with positive ratioλ and angle
α is viewed as multiplyingu by z = λeiα or being the (general-
ized) translationTz defined byTz(u) = zu onD = C|| − {O}.
(16) is written as :

C(u, v) = Γ
(
u

v

)
or, in real notation, (19)

C(u, v) = Γ

(
|u|
|v| , argu− argv

)
(20)

where|z| is the modulus ofz.
G6–stationarity can be shown to be connected with self-similarity.

4.3. An important special case

An important special case is related to the situation whereG, the
group of all generalized translations onD, is isomorphic to some
subgroup of the group of standard translations in the plane. In
such a case, a practical way arises to produceG–stationary covari-
ance functions from the knowledge of classical stationary func-
tions. Suppose that(D, ·) is isomorphic to(D0,+), by isomor-
phismϕ, the inverse of which isψ. Let G be the group of all
generalized translations on(D, ·). Random fieldX defined onD
and random fieldY defined onD0 verify :

Y (s) = X(ψ(s)) or, equivalently,X(u) = Y (ϕ(u)) (21)



Thus,X is G–stationary⇐⇒ Y is stationary in the classical sense.
Moreover, ifCX(u, v) = ΓX(uv−1) andCY (s, t) = Γ(s − t),
ΓX andΓY are related by :

ΓY (h) = ΓX(ψ(h)), h ∈ D0 or ΓX(w) = ΓY (ϕ(w)), w ∈ D
(22)

Examples
Many of the previous examples can be dealt with using this

approach, provided a suitable isomorphism is defined. Suppose, in
the sequel of this section, thatΓ, a complex-valued function de-
fined onD0, is associated with the covariance function of a classi-
cal stationary process byC(u, v) = Γ(u− v).

The following typical examples (whereh = (h1, h2)) will be
useful further for simulation of random fields :

• Separable case

Γ1(h) = σ2ρ
|h1|
1 ρ

|h2|
2 , 0 < ρi < 1, i = 1, 2 (23)

• Isotropic case

Γ2(h) = σ2ρ||h||, 0 < ρ < 1 (24)

• Cyclic case

Γ3(h) = σ2 cosh1 cosh2 (25)

• Self-similarity case

Γ4(h) =
σ2

2

[
eHh1 + e−Hh1 +

(
eh1 + e−h1 − 2 cosh2

)H]
(26)

A random fieldX will be G–stationary as soon as :

CX(u, v) = Γ(ϕ(u)− ϕ(v)) = Γ(ϕ(uv−1)) (27)

Example 7(Perspective planar transform)
Consider the perspective projection of an object surfaceS onto

an image planeI, at focal distancef from the camera plane, where
(O,X, Y ) is the camera coordinate system and (O,x,y) the image
coordinate system. The image plane is defined byZ = f . In
Computer Vision, a perspective projectionp is defined by the focal
lengthf , the distanceδ, the slantσ and the tiltτ . The slant is the
angle between the optic axis and the surface normal. The tilt is the
angle between the parallel projection of the surface normal onto
the image plane and thex axis. δ is the perpendicular distance to
the plane from the originOXY Z andf is the focal length of the
camera.

The projection,p, relates the coordinatesv = (z, t) of a point
in the object plane to the coordinatesu = (x, y) of a point in
the image plane byu = p(v) = (p1(v), p2(v)). Conversely, the
backprojection isp−1(u) = (p−1

1 (u), p−1
2 (u)).

x = p1(v) =
f

sinσz + δ cosσ
(cosσ cos τz − sin τt−

δ sinσ sin τ) (28)

y = p2(v) =
f

sinσz + δ cosσ
(cosσ sin τz + cos τt−

δ sinσ sin τ) (29)

The transformp is a projective transform if its determinant
satisfies:∣∣∣∣∣ cosσ cos τ − sin τ −δ sinσ cos τ

cosσ sin τ cos τ −δ sinσ sin τ
sinσ 0 δ cosσ

∣∣∣∣∣ 6= 0 (30)

The group of transforms consideredG7 (g7(u), u ∈ D) is de-
fined by:

g7(u) = p ◦ g1 ◦ p(u) (31)

whereg1(v) = v + h is a translation onD.
The idea behind this construction is to represent in the plane

theG-invariance of a random field which is a projection of aG1

stationary field in the object planeS. The groupG7 is isomorphic
to the group of translation.

Let us define, foru ∈ IR2, ϕ(u) = (p−1
1 (u), p−1

2 (u)), where
p−1

1 (u) andp−1
2 (u) are the backprojection rational functions. Thus

X is G7-stationary if and only if:

C(u, v) = Γ
(
p−1

1 (u)− p−1
1 (v), p−1

2 (u)− p−1
2 (v)

)
(32)

5. SIMULATION RESULTS

Texture synthesis can be performed in all the previous cases using
the Cholesky factorization method [9]. LetX ∈ IRM

2
be the

random vector corresponding to an arbitrary 1D scan of the points
of theM ×M domain, of mean vectorm and covariance matrix
R. Without any loss of generality, we can assume the mean to be
constant and equal to zero. Given that it is a covariance matrix,
R is symmetric and positive. IfR is definite positive, it can be
factorized as :

R = LLt (33)

whereL is a lower triangular matrix, which is known as the Cholesky
factorization. LetY = L−1X. Using (33), it is straightforward to
obtain :

E[Y Y t] = E[L−1XXtL−1t] = I (34)

i.e. the random vectorY is a white noise.
The synthesis method follows the previous steps : findL, and

simulate a Gaussian random noise vectorY ∈ IRM
2
. The random

field desired is then given by :

X = LY (35)

On the one hand, the main advantage of this method is the fact
that the second order moments of the simulated random vectorX
are exactly the theoretical ones. On the other hand, its main disad-
vantage is the heavy computational load and storage requirements
necessary to perform the Cholesky factorization of aM2 ×M2

matrix. Practically, the simulations were limited to64× 64 pixels
texture fields.

The theoretical correlation function is needed for the simula-
tions, and we have used the functions (Γ1,Γ2,Γ3) given in the
previous section by (23), (24) and (25). Figure 1 and Figure 2
show a few examples of texture fields simulated using the method
described above. For all the groups of transforms considered, the
invariants that describe the correlation contain two parameters :
i(u, v) = (ϕ(v)− ϕ(u)) = (h1, h2).

For all the simulations the variance of the model wasσ = 1.
All the fields shown in Figure 1 and Figure 2 were stretched to
fit the dynamic range of possible gray levels [0, 255]. For theG5

and theG6 cases, the coordinate zero was replaced byε = 0.1 for



the numerical implementaion, although, theoretically,ε can be as
close to zero as possible.

For the simulations of the perspective projection,f = δ =
M , the tilt was set toτπ/2, which means that there is no rotation
between the image coordinate system and the projected surface
coordinate system, and the slant to2.0 rd.

The simulated fields shown exhibit characteristic visual prop-
erties related to the type of second-order invariance. In particular,
if a transformation of the considered group is applied, the aspect
of the simulated field is invariant. Except for the case whereG is
the group of translations in the plane, the random fields depend on
the placement of the centre of the coordinate system, as well as on
the position of the projected plane in the space for the caseG7.

The G-invariant fields exhibit anisotropic characteristics and
strong directionalities. These characteristics make such models
suitable for the synthesis of anisotropic flow like textures, studied
by Rao [10, 11]. In his work, Rao models anisotropic textures as
a superposition of two fields : a directional or flow field, which
contains the visible geometric properties of the fields, and a textu-
ral second order stationary field. The model proposed above can
be useful for a simultaneous representation of these two aspects,
even though the formal link between the directional field observed
and the geometric properties of the second-order invariance has
not been clearly established yet.

6. CONCLUSION

In this paper, a general formulation of the random fields second-
order invariant for a group of transforms is proposed and discussed
in the light of some group theory concepts. In particular, it is
shown that the correlation function of a second-orderG-invariant
random field on a spaceD can be formally defined on the orbits of
D ×D for the groupG. The correlation function can be therefore
characterized through the orbit invariant functions. The classical
examples of stationarity and isotropy fit exactly in this formula-
tion. The hypothesis that generalize the classical stationarity are
outlined, and the particular case of a group of transforms in the
plane isomorphic to the group of translations is detailed. In this
particular case, the valid correlation functions for aG-invariant
field are directly deduced from the valid correlation function for
the second-order stationary case.
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