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ABSTRACT

In this paper we propose an anisotropic model for
2D fractional noise generated from a Gaussian mix-
ture distribution. We propose two identification
methods for this model: the first one is a forward
modeling approach based on even order cumulants
of the field, while the second one is an inverse mod-
eling approach where the synthesis filter is inverted
in order to obtain an estimation of the driving noise.
Simulation results are presented which show the
effectiveness and the robustness of the proposed
methods.

1. INTRODUCTION

In the last years, there has been an increasing in-
terest in the characterization of images by “1=f”
models (which present long-range dependence). In
particular, several works have studied the use of
the fractional Brownian motion (fBm) [3] for tex-
ture modeling [4]. These studies are, however, re-
stricted to the isotropic case. As will be discussed
in this paper, dual discrete-space models [1] may
be more flexible and more tractable when dealing
with real data. More precisely, we introduce a new
model of “1=f” type for discrete textures, which
takes into account the anisotropy often existing in
natural scenes. This model can be seen as a two-

dimensional extension of fractional ARIMA mod-
els [1, 2]. It is thus an anisotropic alternative to the
2D fractional Gaussian noise. Furthermore, the pro-
posed model has an arbitrary probability distribu-
tion, approximated by a Gaussian mixture, which
allows us to characterize a wide class of images.
We propose a two-step nonlinear method to iden-
tify this model. The efficiency of the proposed me-
thod is illustrated by simulation examples.

The outline of this paper is as follows: in the
next section we present the proposed model of an-
isotropic noise and derive some of its theoretical
properties. Section 3 describes two identification
methods for the parameters of this model. Section
4 presents the experimental results and allows us
to draw some conclusions.

2. THE MODEL OF ANISOTROPIC
FRACTIONAL NOISE

Our aim is to propose an anisotropic non-Gaussian
discrete-space generalization of the fractional Gaus-
sian noise (fGn). In 1D, the fGn is defined as a
generalized random process whose “power spec-
trum density” is given by:
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The dual discrete-time model of the fGn is an
FARIMA(0; d; 0) with d 2 R+ [1], denoted byu(n),
such that:

�
1 � q�1

�d
u(n) = w(n)

where w(n) is a zero-mean white Gaussian noise
and q�1u(n) = u(n�1): As 1� q�1 is a discrete-
time derivation operator, (1 � q�1)

d represents a
discrete-time fractional derivation of order
d 2 (0; 1=2). As ! ! 0, the power spectrum den-
sity of the FARIMA(0,d,0) process tends to that of
the fGn defined in (1).

A first isotropic 2D extension of the fGn is a
generalized random field whose “power spectrum
density” has the form:

S(!x; !y) /
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�2d ; 0 < d <
1

2
: (2)

Its discrete equivalent is an isotropic FARIMA
which can be formally defined as:

��
1 � q�1x

�
(1 � qx) +

�
1 � q�1y

�
(1� qy)

�d
u(n;m) = w(n;m)

where w(n;m) is a 2D zero-mean white Gaussian
noise of variance �2w and q�1x (resp. q�1y ) denotes
the shift operator in the x (resp. y) directions:
q�1x u(n;m) = u(n � 1;m) (resp. q�1y u(n;m) =
u(n;m� 1)).

The power spectrum density of u(n;m) reads

S(!x; !y) =
�2w

42d
�
sin2 !x

2 + sin2 !y

2

�2d :
In this case, as !x ! 0 and !y ! 0, the power
spectrum density tends to that of the isotropic con-
tinuous-space model defined by (2).

In practice, it is often useful to have the abil-
ity of modeling anisotropic textures. In order to
define such an anisotropic model, we propose an
extension of the previous model by means of the
following equation:

Dd
�;' (qx; qy)u(n;m) = w(n;m): (3)

The chosen operator Dd
�;' (qx; qy) realizes a dis-

crete fractional derivation of order d. It also de-
pends on two additional parameters� and', which
describe respectively the anisotropy in the image
and its directionality (privileged orientation in the
field). In our model, we also allow the driving noise
w(n;m) to have a zero-mean non-Gaussian distri-
bution, here approximated by a Gaussian mixture.

The form chosen for the operator Dd
�;' (qx; qy)

corresponds to
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The power spectrum density of u(n;m) is there-
fore given by

S(!x; !y) =
�2w

I(!x; !y)2(d�1)A�;'(!x; !y)2
(4)

where
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2

is an isotropic part only depending on the fractional
derivation order d and

A�;'(!x; !y)

= (1 � � cos') sin2
!x
2

+ (1 + � cos') sin2
!y
2
�

1

2
� sin' sin!x sin!y

is an anisotropic part, depending on the parame-
ters � and '. From this expression, it is obvious
that we can obtain all possible forms for
A�;'(!x; !y) by considering� � 0 and' 2 [0; 2�).
Moreover, it can be shown [6] that when � < 1,
A�;'(!x; !y) is positive on [��; �)2 n (0; 0) and
thus S(!x; !y) has no singularity except at (0; 0).

We now study the behaviour of S(!x; !y) in
the neighborhood of (0; 0) in a polar coordinate sys-
tem �

!x = !r cos!�
!y = !r sin!�



where !r � 0: As !r ! 0, we obtain

S(!r cos !�; !r sin!�)
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The process defined by (3) has long-dependence
properties only if its power spectrum density is di-
vergent at (0; 0), which requires d > 0. On the
other hand, in order to have a well-defined process
(in the mean square sense), one must impose

Z �

��

Z �

��

S(!x; !y)d!x d!y <1

which, as � < 1, implies 4d�1 < 1 and therefore
d < 1=2. Finally, the domain of validity for d is
the interval (0; 1=2) :

The interpretation of the model parameters is
illustrated in Fig. 2.

3. IDENTIFICATION METHOD

We have already studied the case where the driving
noise w(n;m) is Gaussian [5]. In this work, we
are interested in a non-Gaussian field generated by
a Gaussian mixture1:

w(n;m) � (1� ")N (0; �20) + "N (0; �21);

with " 2 [0; 1].
A method based on a direct maximization of

the likelihood function for estimating the parame-
ters of the model is complicated as it leads to the
optimization of a function of 6 variables. The use
of the Estimation- Maximization (EM) algorithm
was found to be successful in the Gaussian case
([5, 6]). However, this algorithm becomes intrac-
table for a Gaussian mixture because of the long-
dependence properties of the considered model.
For the identification of this model, we propose a
statistical method consisting in two steps:

1The normal distribution with mean � and standard de-
viation � is denoted byN (�; �2).

1) We estimate the fractional parameter d, the
parameters characterizing the anisotropy (�) and
the directionality (') of the field and the global vari-
ance of the generating noise, �2w = (1 � ")�20 +
" �21, by minimizing the mean-square error between
the log-periodogram of the image and its log-spec-
trum density. The corresponding function to be min-
imized is given by:

E(�2w; d; �; ') =
X

(k;l)6=(0;0)

n
logPN (!k;N ; !l;N)

+ CE � log �2w + 2(d � 1) log I(!k;N ; !l;N )

+ 2 logA�;'(!k;N ; !l;N )
o2

(6)

where PN denotes the periodogram of the N �N
image, CE is the Euler’s constant and !k;N =
(2�k)=N , k 2 f0; : : : ; N � 1g. As this criterion
linearly depends on d and log �2w and nonlinearly
on � and ', the estimation problem reduces to the
iterative optimization of a function of 2 variables.

2) Based on these parameter estimates, we can
realize an estimation of the parameters of the dri-
ving noise w(n;m). Two methods have been en-
visaged to perform this task.

� Forward modeling approach. The cumulants
of the observed image u(n;m) are matched
to their theoretical expressions. For exam-
ple, we can use the relations

cum4u =3 " (1 � ")(�21 � �20)
2
X

(k;l)2Z2

h(k; l)4

cum6u =15 " (1 � ")(1� 2")

� (�20 � �21)
3
X

(k;l)2Z2

h(k; l)6

where h(k; l) denotes the impulse response
of the synthesis filter. This impulse response
can be deduced from the estimations perfor-
med in Step 1. A third equation is provided
by the expression of the variance. The vari-
ance of the driving noise can be obtained
from the previously estimated value of log �2w



or it can be re-estimated using the autocorre-
lation sequence (k; l) of u(n;m) when
(k; l) 6= (0; 0). In this latter case, one could
expect the method to be robust with respect
to a Gaussian noise added to the observed
image.

� Inverse modeling approach. We can invert
the synthesis filter in order to obtain an es-
timation of the driving noise. This inversion
is possible due to the boundedness of the fre-
quency response of the inverse filter:

0 < Dd
�;' (e

|!x ; e|!y) � (1 + �)2d:

We then estimate the mixture parameter " and
the variances �20 and �21 by using a method
of moments. This is based on the calcula-
tion of the p-th order asbolute mean values
of w(n;m) :

Efjw(n;m)jpg = Cp[(1� ")�p0 + "�p1]

whereCp is a constant depending on p. Clo-
sed form expressions of the estimated para-
meters are obtained from the first, second and
third absolute mean values of the estimated
driving noise.

4. EXPERIMENTAL RESULTS

In Fig. 1 we present a realization of a non-Gaussian
anisotropic field and in Table 1 the estimation of
the fractional model parameters resulting from a
Monte Carlo study carried out over 100 realizations
of the process (256�256 pixels). As the proposed
estimation methods do not explicitly take into ac-
count a possible measurement/modeling noise in
the observed image, the robustness of the estima-
tors with respect to a N (0; �2b ) additive noise has
also been evaluated in this table.

We have also compared the performances of
the two proposed estimation methods for the para-
meters of the driving noise in Table 2. The inverse

Par. d � '

Value 0.3 0.7 �=4
�b = 0 mean 0.3002 0.6992 0.7830

std 0.0042 0.0060 0.0094
�b = 0:7 mean 0.2995 0.6975 0.7837

std 0.0042 0.0060 0.0094

Table 1: Performance of the proposed estimation
method for the parameters of the anisotropic frac-
tional noise model.

modeling approach is denoted by “IM”, while the
foward modeling one is designated by
“FM”. We remark the good performances of the

Par. " �0 �1
Value 0.4 1 15

IM mean 0.3997 1.0050 15.0020
�b = 0 std 0.0042 0.0292 0.0999

mean 0.3998 1.2355 15.0266
�b = 0:7 std 0.0042 0.0302 0.1015

FM mean 0.4035 1.0217 14.9759
�b = 0 std 0.0309 1.1530 0.3653

mean 0.4037 1.1488 15.0193
�b = 0:7 std 0.0306 1.1791 0.3618

Table 2: Comparison of the performances of the
forward and inverse modeling estimation methods
for the Gaussian mixture parameters.

inverse modeling approach in the presence of ad-
ditive noise. This may be explained by the bound-
edness of the frequency response of the inverse syn-
thesis filter and the low orders of moments used
to estimate the parameters. The forward modeling
method leads to an unbiased estimation of the pa-
rameters, but it exhibits a higher mean square es-
timation error.

Note that our method may be extended to semi-
parametric estimation where the input distribution
is arbitrary. Indeed, one can approximate many
usual distributions by a mixture of Gaussians.
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Figure 1: A realization of the proposed non-
Gaussian anisotropic model (d = 0:3, � = 0:7,
' = �=4).
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Colloque GRETSI, Grenoble, France, 15-19 Sept.
1997, pp. 635-638

[6] B. Pesquet-Popescu Modélisation bidimensionnelle
de processus non stationnaires et application à
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Figure 2: Power spectrum density of the
anisotropic noise for different values of the
parameters: ' = ��=5; � = 0:97; d = 0:3 (up)
and ' = �=5; � = 0:57; d = 0:3 (down). The
angle '=2 is measured in inverse trigonometric
sense with respect to the vertical axis.


