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The paper presents a computational model to ex-

tract local symmetry axes corresponding to the areas

of homogeneous texture in an image. The approach

is to construct an energy functional whose minimizer

is a special distance function which attains its maxima

at the boundaries between di�erent texture regions and

decays away from texture boundaries. Local symmetry

axes are extracted from this distance function. The

method extends to color texture images. Texture ho-

mogeneity is measured using the �lter responses of a

set of Gabor �lters which are derived from dilation and

rotation of a single Gabor function.
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1 Introduction

The paper presents a computational model to ex-
tract local shape symmetries corresponding to the ar-
eas of uniform texture in a given image. The method
extends to color texture images. Local texture proper-
ties are derived based on the power responses of a set
of Gabor �lters. These �lters form a continuous fam-
ily parametrized by two variables. Just like wavelet
bases, they can be derived from dilation and rotation
of a single �lter. The representation of an image using
the power responses of Gabor �lters are called Gabor-
Wavelet representation. Evidence suggests that the
simple cells in the visual cortex of the mammalian
brain can be modeled by Gabor functions. The moti-
vation for using Gabor �lters in texture representation
is discussed in the references [1, 2].

Gabor Wavelet representation is widely used in seg-
menting images based on textural properties of object
surfaces [3, 4, 5]. Typically, these approaches form an
auxiliary image that is based on the power responses
and then they use the gray scale image analysis tech-
niques to analyze the image. In [5] Lee et.al directly
search for texture boundaries by minimizing an energy
functional.

The approach proposed in this paper di�ers from
others in the following way. We compute the shape
descriptors represented in the form of local symmetry
axes directly from the image without determining the
texture boundaries. This is achieved by constructing
an energy functional whose minimizer is a special dis-
tance function called the edge strength function. The
edge strength function attains its maximum value at
the boundaries between di�erent texture regions and
decays exponentially away from texture boundaries.
Power responses of a set of self similar Gabor �lters
are used as a measure of texture homogeneity.

The paper is organized as follows. In Section 2 Ga-
bor Wavelet representation of texture is explained. In
Section 3 the computation of the edge strength func-
tion hence the computation of local symmetry axis is
given under the assumption that the image is piece-
wise constant and corrupted with random noise. The
computation of the edge strength function is extended
to texture images in Section 4.

2 Gabor Wavelet Representation of

Texture
Gabor �lter is a complex exponential that is mod-

ulated by an elongated Gaussian function:
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The �lter is band pass in x direction and low pass in y

direction. A set of self similar Gabor �lters G(~x; �;�)
where � is the radial frequency and � is the angular
orientation of the �lter, may be generated by rota-
tion and dilation of the preceding single Gabor �lter
h(x; y). Filter response P (~x; �;�) of each �lter is the
convolution of the �lter with the image. The set of
total 24 �lters at 8 orientations and 3 di�erent radial
frequencies has been successfully employed to repre-
sent various textures [5].



3 Symmetry Axis: Piecewise Constant

Case

In [6, 7], it was shown that a function called the
edge strength function can be used to extract local
symmetry axis and the shape skeletons. The edge
strength function v(~x) is computed from a gray scale
image g(~x).

To be more speci�c, consider the following func-
tional
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where u(~x) is the approximate image and �; � and
� are the parameters. By minimizing the preced-
ing functional we seek for an approximate image u(~x)
that best represent the image and the edge strength
function v(~x) that varies between 0 and 1. The edge
strength function v(~x) may be interpreted as the prob-
ability of the existence of an edge at a given image
location ~x = (x; y). Key point is that the third term
of the preceding functional approaches to the length
of the segmentation loci as �! 1. Thus, v(~x) is the
blurred version of the true object boundaries (discon-
tinuity loci of the image) with a blurring radius equal
to �.

The crucial result presented in [6, 7] is that the
successive level curves of v(~x) mimic the behavior of
the fronts propagating with a speed proportional to
curvature. Thus, the curvature of the level curves are
inversely proportional to the gradient of v(~x) along
the level curves. Hence the curvature maxima of the
level curves can be tracked by tracking the minima of
the gradient. Figure 1 depicts the level curves of v(~x)
superimposed on the original gray scale image g(~x).
The local symmetry loci are depicted in Figure 2.

Detailed discussion of the edge strength function
and the local symmetry axes is given in the references
[9, 10].

Figure 1: Level curves of v(~x)

Figure 2: Local symmetry loci extracted from v(~x)

3.1 Color Images

The idea presented above extends to color images.
Let gi(~x); i = 1; 2; 3 be the three color bands. The sim-
plest way to compute a common edge strength func-
tion from 3 images is to consider the following func-
tional:

E(ui; v) =

Z
R

(1� v(~x))2
�X

�ijjrui(~x)jj
2

�
d~x+

Z
R

X
�i(ui(~x)� gi(~x))

2d~x+

Z
R

�

2
jjrvjj2 +

v2

2�
d~x



Figure 3: Color image. R, G and B components of
the color image are shown in the �rst two rows. Level
curves of v and the symmetry set in a selected area
are shown in the bottom row.

The common edge strength function can be com-
puted as the solution of the following 4 coupled di�u-
sion equations.
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Notice that, each color band is nonlinearly smoothed
away from boundaries and approximated by a piece-
wise smooth image that best represents the input im-
age. At the same time the value of the distance func-
tion v(~x) is increased whenever any u has a large gra-
dient. A better alternative for computing the edge
strength function from color images can be found in
[8]. Figure 3 depicts the level curves of v(~x) and the
local symmetry axis computed from a color image.

4 Symmetry Axis: Texture Images
The preceding model makes the basic assumption

that the true image can be represented by a piecewise
constant function perturbed with random noise. The
second term in Eq.(2) imposes that the image gradi-
ent should be small away from the discontinuity loci
(i.e. edges). Many images, however, contain textures
that are characterized by large but systematic texture
gradients. We, now adopt the preceding symmetry ex-
traction method to texture images in order to extract
the local shape symmetries corresponding to the areas
of homogeneous texture (Figure 4). Power responses

Figure 4: Sample image for illustration. Two identi-
cal axes of full symmetry corresponding to two square
shaped image sections of uniform texture.

of Gabor �lters used as a measure of texture homo-
geneity. Given �lter responses P (~x; �;�) we com-
pute its smooth approximation u(~x; �;�) which varies
slowly both in the spatial and the spectral domains.
Large gradients in the power response u(~x; �;�) are
allowed only near the texture boundaries, i.e. where
v(~x) is high.

To be more speci�c, we consider the following func-
tional:
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Gradient descent equations for u and v are:
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The coupled equations (4) for gray scale texture im-
ages can be extended to color texture images by �rst
decomposing the color image into three bands as dis-
cussed earlier for the piecewise constant gray images.
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