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1. INTRODUCTION model of blob-texture cells consists of three con-
secutive stages. The final stage (blob-texture cells)

Texture is an important part of the visual world ofeceives its inputs from multiple units in the second
animals and men and their visual systems succestage, the so-called blob-pattern subunits, which in
fully detect, discriminate and segment texture. Retlarn receive their input of the first stage (blob de-
atively recently progress was made concerning sttec¢tors).
tures in the brain which are presumably responsi- Furthermore, the modelis used as animage pro-
ble for texture processing. Von der Heydt et atessing operator and compared with existing tex-
(von der Heydt et al. 1992) reported on the disure operators like the Gabor-energy operator and
covery of a texture processing neuron in areas e cooccurrence matrix operator. This evaluation
and V2 of the visual cortex of monkeys which thejs done by comparing the results of a texture seg-
called grating cell Grating cells respond vigor-mentation task, in which an image containing a num-
ously to gratings of bars of appropriate orientatiober of blob textures is segmented on the basis of
position and periodicity. In contrast to other orifeatures obtained with the three texture operators.
entation selective cells, grating cells respond veThe method is similar to the evaluation of the grat-
weakly or not at all to single bars which do noing cell operator, with respect to the processing of
make part of a grating. This behaviour of grateriented texture (Kruizinga & Petkov 1998).
ing cells cannot be explained by linear filtering fol-
Iqwed by half—w_ave rectifi_cation as in the case of2_ COMPUTATIONAL MODEL OF BLOB
simple cells, neither can it be explained by three- DETECTORS
stage models of the type used for complex cells.

Elsewhere we proposed a model of this type of c&lhqygh most of the cells in the primary visual cor-
and demonstrated the advantages of grating cgll§ (v1) are orientation selective, about 10-20% of
with respect to the separation of texture and forfje cells do not show any orientation preference.
information (Kruizinga & Petkov 1995, Petkov &\ost of these 'non-oriented cells’ have a centre-
Kruizinga 1997). Tanaka et al. (1991) found ans, round receptive field profile (impulse response),

other type of texture processing neuron, that respQiiflsi can be modelled by means of a Difference-
to dot-patterns. These texture cells, which we cg}t g3ussians (DoG) function as follows:

blob-texture cellsn the following, have similar char-
acteristics as grating cells. They do not react to sin- Ug .oy (X Y) =
gle dots but only to a pattern consisting of a num- o 2
: . . 1 —((x=8)%+(y-n)?) — (8% (y-n)?)

ber of dots. Neurophysiological experiments re- e  2Rd2 v
vealed a preference of the cells for a regular dot 2ny?o? (1)
pattern in comparison to more random patterns of
dots. Grating cells are not activated by these rawherex andy specify the position of a lightimpulse
dom dot patterns, though regular dot patterns causehe visual field and,n,c andy are parameters
a slight grating cell response. as follows:

In this paper we propose a computational model The centre of the receptive field within the vi-
of blob-texture cells that is capable of explainingual field is specified by the pafg,n). The pa-
the results of neurophysiological experiments. Owameterso and y specify the standard deviations




oc = Yo (y < 1.0) and os = o of the centre and (&,n). The concerned subunit has the same output
the surround Gaussians, respectively. In our eas the unoriented cell with the same locat{gm)
periments we used a value p= 0.5. The nor- if the other cells show no response. This will only
malisation factorzwl@ is used to obtain a functionbe the case if the unoriented cell signals a blob in
with a zero DC component. In our experiments wiés receptive field. Other image features may also
used two types of blob detectors: one with an ej3voke a reaction of the cell, but they will cause a
citatory, and the other with an inhibitory central receaction of nearby cells as well. In that case, the
gion. The latter detects dark blobs on a light bacRutput of the blob detecting subunit, ;. is influ-
ground. These cells are modelled by a two-stageced by the outputs of nearby unoriented cells, in
model consisting of a first, linear filtering stage ansuch a way that if at least one of these cells reacts,
a second, non-linear stage which includes threshe subunit response is inhibitecg. the response
olding and contrast normalisation. The linear stagg set to zero. In our model the lateral inhibition
consists of computing an integral: scheme involves a fixed number of nearby unori-
ented cells lying in a circle around the centre of the

s§7n707y://f(x,y)um’c,’y(x,y)dxdy (2) receptive field,n):

wheref(x,y) is the intensity distribution of the in- ‘/E,n,o,v -
put image. In the second stage, contrast normalf v . ;. if Vi, i € {1.N},

sation is performed by dividing the resporssg ;, Ve n,0,y(& + A8, N +ANi) < PVe gy
by the average grey level in the image within the re 0 otherwise
ceptive field of the modelled cell. The average gray (5)
level g , 5 is computed as follows:
bt lyn)? ori

g n0 = / / fixy)e 2> —dxdy (3) AE = R|atcos<W> (6)
In order to implement contrast normalisation, we An = Riwsin 27 -
use the hyperbolic ratio function to calculate the Ni = RNatSIN| ()

output of the unoriented cell from the ratjg, ;, =

EN0Y \which i i
B which is proportional to the local contrasusedp: 0.8) of the response, , ;. andRy¢ is the

within the receptive field of the cell: distance between the centre of the considered cell
and the nearby cellRf;; = 1.360). The number
Venoy = { lenoyR i of nearby cells that are involved in the inhibition
”’ X (m) otherwise (4) Pprocessis set tbl = 15. This value is high enough
to guarantee that the blob-detectors do not react to
wherex(z) =0forz< 0,X(z) = zfor z> 0 (thresh- features other than blobs.
olding) andR andC are the maximum response In our experiments we use blob detectors with
level and the semi-saturation constant, respectivalyfferent values o6 to enable the detection of blobs
The modelled unoriented cell will react stronglyn different scales. This introduces however a re-
to a blob which is located entirely in the centredundancy in the coding of blob localisation since
excitatory, region of the receptive field, though thelob-detectors on more than one scale, but with the
cell will also react to other features in its receptiveeceptive field centred at the same position, may
field such as lines or edges. The function of an ide@act to a blob in their receptive field. Not only
blob detector is, however, to signal only blobs. Ouhe blob detector with the appropriate size will re-
computational model of blob detectors is based a@t, but all blob detectors with larger valuesof
the hypothesis that this separation of blob featur@given the fact that no other image features appear
from other image features is induced by a laterd the inhibitory region of the larger receptive field)
inhibition mechanism. A blob detecting subuniwill show a response. The redundancy can be elim-
\/E,n,cr,v gets its input from the modelled unoriente¢hated by suppressing all outputs of non-optimal
cell vg , 5, and a number of similar modelled celldblob-detectors at the same position. This is imple-
with the same preferred blob size but with the cemented by a winner-takes-all mechanism across all
tre of their receptive fields located in the vicinity oblob detectors with the same receptive field centre

¥vherep is a fixed fraction (in our experiments we

0 if amp =0



a) b) c) d)

Figure 1: The single image in top-left position is a synthetic input image. The images in the first column
are the results of convolutions with centre-surround kernels of four different sayethé results are
normalised for contrasb}, the modelled cell responses are inhibited by the responses of nearby modelled
cells ) and modelled cells with the same centre of the receptive field but with different sizes compete
with each other in a winner-takes-all scherdg (

but with different values of the size parameter The model as it is presented above will detect
The output of a blob detectet , 5, is computed blobs of a specific size in the visual field, indepen-

as follows: dent of the contrast and discarding all other image
_ features as lines and edges. The visual information
Venoy = processing by the modelled blob-detectors is illus-

trated in Fig. 1 together with the results at interme-
diate stages. The input image (upper-left image) is
(8) convolved with centre-surround DoG profiles with

. four different sizes. As can be seen from the re-

The winner-takes-all mechanism will cause the '@’ulting image (Fig. 1a), the modelled DoG cells

formatlon concerning th_e Ioce_ltlon of blobs in th eact to blobs, but also to other image features. Fur-
image to be separated into different channels,

pending on the size of the blobs. The sensitivity ?Eermore, the strength of the response depends on

. . . e local contrast of the features. The results are
the blob-texture cells to blobs with different size

will therefore depend on the sampling on the scals—ency (Fig. 1b). To ensure that only blobs are de-

;ig?:s' In our experiments we used four dlﬁere%cted, the modelled cell response is inhibited by

Venoy If \/E,n,cr,_v = maXy (Ve or,y)
0 otherwise



responses of neighbouring cells at the same scale Finally, the response a blob-texture dgll, ;.
(Fig. 1c). Finally, to make sure that there will be avhich is centred at positio§,n in the visual field
response at only one scale at every position in thad has preferred blob size specifieddyyis cal-
visual field, a winner-takes-all mechanism inhibitsulated by weighted summation of the blob-pattern
all sub-maximum responses (Fig. 1d). subunits.

_EE)2en-n')?
3. COMPUTATIONAL MODEL OF brnove= [[€ #  tenoycd€an
BLOB-TEXTURE CELLS (12)

In the second stage of our model, the outputs ®he parametef specifies the size of the region in
the blob detectors are combined by so-called blowhich the weighted summation takes place. Larger
pattern subunits using an AND-type nonlinearityalues off3 result in a uniform response in a blob-
In the final stage, the actual blob-texture cells sutexture area even with larger discontinuities in the
the responses of a large number of blob-pattern suiteb pattern.

units in the vicinity of their receptive field centre.

This means that modelled blob-texture cells will 4. TEXTURE OPERATOR EVALUATION
only react if a number of blobs with a specific size

are present in the receptive field of the cell. The reche quantities computed with the blob-texture cell

sponse is dependent on the number of blobs up tggerators can be used as texture features. We next
given maximum. This model of blob-texture Ce”%()mpare the f0||owing set of features:
is next explained in more detail.

The activity of a so-called blob-pattern subunit, ¢ Blob-texture cell operator features:

te 1.0.y.2» With position(&, n) and with preferred blob A' set of blob-texture cell loperators with four
size specified by, is calculated as follows: different preferred blob sizes, three values of
the spatial spreading and selective for both

tenoyg = black and white blobs, is applied to an image,

1 if Card{Ve, ag nsan oy yielding a vector of 24 features in each point.

I=1..n: ¢ Gabor-energy features:

Ve n+om,0y > 0} > 3 A popular set of texture features is based on

0 otherwise the use of Gabor filters (Jain & Farrokhnia

9) 1991). In this case, an image is filtered with

a set of Gabor filters with different orienta-
where the position of the of the respective blob de-  tions, spatial frequencies and phases. Using
tector cells is taken at random within the neighbour-  ejght orientations and three preferred spatial-
hood of(&,n): frequencies and combining the results of sym-
metric and antisymmetric filters, this multi-
A& = (0C+ri)cos channel filtering scheme yields a feature vec-
Ani = (oC+ri)sina;,i=1...n (10) tor of 24 Gabor-energy quantities. The val-
ues of the preferred orientations and spatial-
frequencies are taken to ensure a good cover-
age of the spatial-frequency domain.

whereo( is a fixed radius { specifies the spatial
spreading of the blobs in the pattern) andare
random numbers taken from a normal distribution

with zero mean and standard deviatiab @ndai; e Cooccurrence matrix features:
are random numbers taken from a uniform distribu- A classic method for texture segmentation is
tion between 0 andi2 The number of locations based on the gray-level cooccurrence matri-

within the receptive field that is taken into account ces (Haralick et al. 1973). In each point of
with the determination of blob-texture presence in a texture image, a set of gray-level cooccur-
the receptive field is larger than the number of blobs  rence matrices is calculated for different ori-
to be detected. In our experiments we set the num-  entations and inter-pixel distances. From these
ber of inspected locations to= 30. Only if three matrices, a number of features is extracted
or more blobs were detected in these 30 locations,  which characterise the neighbourhood of the
the blob-pattern subunit is activated. concerned pixel. In our experiments eight



Figure 2: Results of a segmentation experiment using the K-means clustering algorithm. The left-most
image @) shows the inputimage containing nine blob textures, of which the perfect segmentation (ground
truth) is given in imagel). In the next three images, the segmentation results are shown based on the
use of blob-texture cell operator feature Gabor-energy operator featurely &nd cooccurrence matrix
features €).

gray-level cooccurrence matrices were calcu-  '95’, Lecture Notes in Computer Science,
lated in each point using a neighbourhood of  vol.930, Springer-Verlag, pp. 90-99.

size 12x 12. From each of the matrices three )

features (energy, inertia and entropy) werdruizinga, P. & Petkov, N. (1998), Grating cell op-

extracted resulting in a vector of 24 features ~ €rator fetures for oriented texture, A. Jain,
in each image point. S. Venkatesh & B. Lovell, eds, ‘Proc. of the

Int. Conf. on Pattern Recognition’, Brisbane
In order to evaluate the quality of the features ob-  Australia, pp. 1010-1014.
tained with these three texture operators, with re-
spect to texture segmentation, an image contaff®
ing nine blob textures is segmented by means of
the general purpose K-means clustering algorithm. ! e ) g !
First, a given texture operator is applied to the in-  Visual stimuli: bar and grating cellsgiologi-
put image yielding a field of 24-dimensional fea-  Cal Cybemetics6(2), 83-96.
ture vectors. The clustering algorithm then a”CTanaka, K., Saito, H., Fukada, Y. & Moriya,
cates the feature vectors to one of thelusters. M. (1991), ‘Coding visual images of ob-
Figure 2 shows the result of this segmentation ex- jects in the inferotemporal cortex of the
periment using the three texture operators. As can macaque monkeyJournal of Neurophysiol-
be seen from this image, the segmentation based on ogy66(1), 170-189.
the blob-texture cell operator features is better than
the segmentations based on the features of the othem der Heydt, R., Peterhans, E. &uBteler,
two operators. Only at the texture borders pixelsare M. (1992), ‘Periodic-pattern-selective cells
misclassified. in monkey visual cortex’Journal of Neuro-
sciencel2, 1416-1434.
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