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ABSTRACT

L-filters are very successful at restoration of signals corrupted by
noise. However, their on-line design in real-time applications is
practically impossible, since the computation of optimal L-filter
coefficients with the existing methods based on numerical approx-
imations are extremely time consuming. In this paper, we present
a new design methodology for L-filters. Our approach allows one
to compute the desired filter coefficients by just evaluating the in-
verse cumulative distribution function and the probability density
function of the underlying noise at n different points, where n is the
sample size. The presented design method is derived by approxi-
mating the inverse covariance matrix of ordered random variables
and simplifying the closed-form solution of optimal L-filter co-
efficients. The comparisons with the classical approach and the
simulations show that the proposed method is very promising for
a wide range of noise types.

1. INTRODUCTION

Nonlinear filters[1] have been shown to be more effective and ro-
bust than linear filters in many applications. However, the diffi-
culty in design procedures and computational complexity of non-
linear filters have been major drawbacks of these filters.

Especially filters based on order statistics[2] (order filters [3][4])
are proven to be very effective and robust nonlinear filters. They
have been successfully employed in restoration of signals and im-
ages corrupted by noise[5]. The most popular filter of this type
is the median filter[6]. It is easy to implement and shows great
performance on removing the impulsive noise types. Other simple
and well-known filters of this type are the outer-mean (mid-point)
filter, �-trimmed mean filter and L-filter[7]. As being the most
general form among these filters, the L-filter has more flexible and
complex structure. When designed properly it outperforms the lin-
ear filters and the above filters for most of the noise types.

However, for a given or estimated noise type, the classical de-
sign procedure of L-filters is computationally so complex. Espe-
cially, its design in real-time applications is prohibitive. Previous
approaches that employ L-filters use iterative numerical approxi-
mation procedures[7][8][9][10] which are still computationally ex-
pensive and / or have convergence problems.

In this paper, we present a new fast design algorithm based on
approximation theory and order statistics [11][2]. By proposing an
analytical solution our method eliminates the extremely time con-
suming numerical approximation (integration) routines and makes
the practical use of L-filters possible for many applications.
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The description of order filters and, particularly, L-filters is
done in the next section. In section 3, optimal coefficient of L-
filters are represented in a form such that the approximation of its
components in sections 4 and 5 will be possible. The new closed
form solution of these coefficients are presented in section 6. In
section 7 we compared the method in section 6 with the classical
method for various noise types. The outputs of these filters when
applied to noisy signals are shown in section 8. The conclusion is
drawn in section 9.

2. L-FILTERS

Consider the classical problem of estimating the constant ampli-
tude signal� from the samples,x(i); x(i� 1); :::; x(i�n+1), of
a noisy observation datafx(i)g, wheren = 2N + 1. Let

x(i) = � + �(i) (1)

where the�(i) are independent, identically distributed, zero mean
noise samples with a symmetric probability density function(pdf),
f(:), i.e. f(��) = f(�), and a cumulative distribution func-
tion(cdf), F (:), i.e. F (�) = 1 � F (��). In statistical estima-
tion theory, estimation of� is called “location estimation” and the
sample averaging, median, and the outer mean are examples of lo-
cation estimators, and they are the maximum likelihood estimates
of Gaussian, Laplacian, and Uniform distributions, respectively.
Thus, the filters designed to remove noise types with these spe-
cific distributions are the well-known Moving Average, Median,
and Outer Mean Filters, respectively.

If the above data samples are arranged in ascending order of
their magnitude, the order statistics result is

x(1)(i) � x(2)(i) � ::: � x(n)(i) (2)

wherex(1)(i) is the minimum,x(n)(i) is the maximum, andx(N+1)(i)
is the median of the above set of observation data. The output of
an order filter is:

y(i) = g(xi) (3)

where g is a real-valued not-necessarily-linear function of n-vector
xi = [x(1)(i)x(2)(i):::x(n)(i)]

T .
If g is linear (3) becomes

y(i) = a
T
xi =

nX
j=1

ajx(j)(i) (4)

wherea = [a1a2:::an]
T . This type of filters are called “OS-

Filters” or “L-Filters”.



Median filter is a special type of L-filter whose coefficients
areaN+1 = 1; ai = 0; i = 1; 2; ::; n; i 6= N + 1. Moving
Average Filters and Outer Mean Filters are also special type of
L-filters whose coefficients areai = 1=n; i = 1; 2; :::; n, and
a1 = an = 1=2; ai = 0; i = 1; 2; ::; n; i 6= 1; n, respectively.

In [7], the optimal coefficientsa have been determined in Mean
Square Error (MSE) sense, with the location invariance constraint,
i.e. aT e = 1, wheree = [11 : : : 1]T . The optimal coefficients are

a =
R
�1
e

eTR�1e
(5)

whereR is the correlation matrix of the ordered noise variables
�(k), k = 1; : : : ; n, andith row, jth column element,Rij can be
computed by

Rij =

ZZ
1

�1

xyg�(i)�(j) (x; y)dxdy (i < j)

Rii =

Z
1

�1

x2g�(i)(x)dx (6)

where

g�(i)(x) = Kif
i�1(x)[1� F (x)]n�if(x) (7)

g�(i)�(j) (x; y) = KijF
i�1(x)[F (y)� F (x)]j�i�1

�[1� F (y)]N�if(x)f(y) (8)

whereKi = N !=[(i� 1)!(N � i)!] andKij = [N !=[(i� 1)!(j �
i� 1)!(N � j)!]

Since the above expressions in (8) are too complex, generally,
computation of the optimal coefficients require the double and sin-
gle numerical integration. This is computationally so expensive.
Besides, in many cases, to obtain a reasonable precision, the inter-
vals of the numerical integration routine should be kept very small
[7], which makes it even more prohibitive.

3. OPTIMAL COEFFICIENTS OF L-FILTERS

In this section, for simplicity in notation, we will drop the time
index, i, of the variables, i.e.,x = � + � and the ordered random
variables in (2) arex(1) � x(2) � : : : � x(n).

Let the noise random variable,� = �v, where� > 0 is the
standard deviation of�. With this normalization and previous as-
sumptions,v is a zero mean, unit variance random variable with
symmetric pdff , and cumulative distribution functionF .

The order in x holds forv, i.e.,x(j) = � + �v(j) andv(1) �
v(2) : : : � v(n). Let C0 is the covariance matrix of the random
variablev(i) andc0ij is the element ofC0 at i-th row and j-th col-
umn, i.e.,

c0ij = Efv(i)v(j)g � Efv(i)gEfv(j)g (9)

Now, let us represent the L-filter in (4) as:

d =

Pn

i=1
�ix(i)Pn

i=1
�i

(10)

where the coefficients,ai in (4) relate to�i by

ai =
�iPn

i=1
�i

i = 1; : : : ; n (11)

which makes the filter location invariant whatever the choice of the
coefficients,�i.

It is known that optimal coefficients�i are symmetric about
the median, i.e.�i = �n�i+1. Therefore (10) can be written as

d =

Pr

i=1
bi[x(i) + x(n�i+1)]

2
Pr

i=1
bi

(12)

wherer = dn=2e andbi = �i, except for oddn br = �r=2.
To obtain an ideal estimator one has to minimize the mean

square error,with respect to the coefficients,b0i, i = 1; : : : ; r.
Mean square error is,

Ef(d� �)2g =
�2
Pr

i=1

Pr

j=1
bibjcijPr

i=1

Pr

j=1
bibj

(13)

wherecij = (c0ij+c
0

i;n�j+1+c
0

n�i+1;j+c
0

n�i+1;n�j+1)=4. Since
u is symmetric,c0ij = c0n�i+1;n�j+1 andc0ij = c0ji. Therefore,

cij =
c0ij + c0i;n�j+1

2
(14)

With some simple algebra, similar to [7], it can be seen that the
result of the minimization of (13) is equal to the solution of

rX
i=1

bicij = 1 j = 1; : : : ; r (15)

or in vectoral form:Cb = e, whereC is the matrix that contains
cijs,b = [b1 : : : br]

T ande = [1 : : : 1]T . Then, the solution is

b = C
�1
e (16)

Note that this solution is similar to the numerator of (5). And its
denominator is nothing but the normalization over all the coeffi-
cients.

Let �cij is the element ofC�1 at the i-th row and j-th column.
Then the solution can be written as

bi =

rX
j=1

�cij i = 1; : : : ; r (17)

In [11] the L-estimator with these coefficients is shown to be an
asymptotically efficient estimator. In the following sections, we
will follow the same steps as in [11], however, our focus will be
on the coefficients,bi of (12).

4. APPROXIMATION OF THE COVARIANCES

Let u be a random variable that is uniformly distributed over the
interval0 � u � 1. For an ordered sampleu(i) ,i = 1; ::; n, taken
from this distribution, the mean and the covariances are,

Efu(i)g =
i

n+ 1
= �i

cov(u(i); u(j)) =
�i(1� �j)

n+ 2
(18)

To obtain the random variablev from u we used a transformation,
S, such that

v = S(u) = F�1(u) (19)



By using a Taylor expansion on S, and neglecting the higher order
terms we have,

S(u(i)) � S(�i) + (u(i) � �i)S
0(�i) (20)

Then, the mean and the covariances ofv(i) can be approximated
as,

Efv(i)g = EfS(u(i))g � S(�i) = wi (21)

and

c0ij = cov(v(i); v(j)) = S0(�i)S
0(�j)cov(u(i); u(j))

=
�i(1� �j)

(n+ 2)f(wi)f(wj)
1 � i; j � r (22)

since

S0(u) =
dv

du
=

1

f(v)

Note that, here, we assume that the derivative ofS(u) exists at
u = �i = i=(n + 1). This implies the cdf, F, to be differentiable
at �i and pdf,f to be continuous atwi. This will be our only
constraint in the following sections.

Remark: The empirical studies show that the approximation
of the covariancec0ij in (22) gives more precise results if(n + 2)
term in the denominator of the last expression is replaced byn.
However, using either representation does not make any difference
in our computations since that term will be cancelled during the
normalization of the optimal coefficients.

5. APPROXIMATE REPRESENTATION OF THE
INVERSE MATRIX ELEMENTS

Since optimal coefficients can be written in terms of the elements,
�cij , of the inverse of the covariance matrix,C�1 as in (17), deriv-
ing a simple closed form representation for�cijs will be adequate.
From the results in section 4 and (14), thecijs are approximately
equal to:

cij �
�i

nf(wi)f(wj)
1 � i; j � r (23)

where�i = i
n+1

andwi = F�1(�i), i = 1; : : : ; r. If we take the
inverse of the matrix, C whose elements are represented as in (23),
then�cijs can be written as [12]:

�c11 � 2nf2(w1)
�
1
�1

+ 1
��1

�
�cii � 2nf2(wi)

h
1

��i�1
+ 1

��i

i
2 � i < r � 1

�crr � 2nf2(wr)
1

��r�1
(24)

�cij � �cji = �2n
f(wi)f(wj )

��i
i = j � 1 = 1; : : : ; r � 1

�cij � 0 ji� jj > 1

In our case,��i =
1

n+1
. Therefore,�� = ��i = �1 = 1

n+1
,

and (25) becomes

�cii � 4nf
2(wi)
��

1 � i � r � 1

�crr � 2nf2(wr)
1
��

(25)

�cij � �cji = �2n
f(wi)f(wj )

��
i = j � 1 = 1; : : : ; r� 1

�cij � 0 ji� jj > 1

6. COEFFICIENTS

If we substitute, these approximate representations of�cijs into
(17), and cancel the coefficients which appear both at the numera-
tor and denominator of (12):

b1 = f(w1) [�2f(w1) + f(w2)]

bi = f(wi) [f(wi�1)� 2f(wi) + f(wi+1)] i = 2 : : : r � 1

br = f(wr) [f(wr�1)� f(wr)] (26)

wherewi = F�1(i=n + 1).
Finally, the coefficients,�i, i = 1 : : : ; n, of (10) are computed

from bi ’s, i = 1 : : : ; r by

�i = �n�i+1 = bi i = 1; : : : ; r (27)

However, because of our new representation in (12), for odd n,
�r = 2br.

The coefficientsai, i = 1; : : : ; n, are derived from�is by the
relation in (11).

As it is seen from (26), the basic component of the computa-
tion of these coefficients is the sampling (evaluation) of the pdf,f(:),
and inverse cdf,F�1(:), i.e. wi = F�1(�i) andf(wi). The na-
ture of this sampling is shown in Figure 1.
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Figure 1: The sampling of the probability distribution function ac-
cording to the sampling of the cumulative distribution function.

7. EXAMPLES

In this section, we will give examples to the L-filters designed with
equations in (27). Due to the nature of our method, we are only
interested in thew1 � v � wr portion of the pdf and cdf domain,
wherew1 < 0 andwr � 0. This implies that, in this region,0 <
F (w1) < F (wr) � 0:5. Therefore, the following expressions for
different noise pdf’s and cdf’s may not be valid for the rest of the
domain.

We will start with two simple and very well-known noise dis-
tributions: Uniform and Laplacian. Let the sample size n=5 and
r=3.



The pdf and cdf of a symmetric uniform distribution isfu(x) =
1 andFu(x) = x + 0:5. Sincewi = F�1u (i=6), for i = 1; 2; 3,
wi = (i=6)�0:5 andfu(wi) = 1. If we substitute these into (26)
then we haveb1 = �1 andb2 = b3 = 0. From (11) and (27) the
coefficients,ai, of the L-filter, (4), are equal to:a1 = a5 = 0:5
anda2 = a3 = 0, which is nothing but the ’outer mean filter’.

In the given domain region, the Laplacian distribution pdf and
cdf arefl(x) = Fl(x) = (1=2)ex and inverse cdf isF�1l (x) =
ln(2x). Therefore,w1 = ln(1=3), w2 = ln(2=3), andw3 = 0.
Substitute these intofl(wi): fl(w1) = 1=6, fl(w2) = 1=3, and
fl(w3) = 1=2. Then,b1 = (1=6)[�2(1=6) + (1=3)] = 0, b2 =
(1=3)[(1=6) � 2(1=3) + (1=2)] = 0 and b3 = (1=2)[(1=3) �
(1=2)] = (�1=12). From (11) and (27) the coefficients,ai, of the
L-filter, (4), are equal to:a3 = 1 anda1 = a2 = a4 = a5 = 0,
which is the ’median filter’.

As it is seen from these examples, the method presented gen-
erated the optimal coefficients for uniform and Laplacian distri-
butions with very simple calculations when the sample size, n=5.
The computation complexity isO(n). The speed of this method
is enormously higher than the method in [7] since we do not em-
ploy any numerical integration procedure. In the rest of the section
we compare the coefficients that are generated with the method
presented in this paper to the coefficients in [7] for several dis-
tributions.These distributions are: U-shaped, Parabolic, Gaussian,
Laplacian, and Uniform distributions.

In Tables 1-5, we present the L-filter coefficients generated
with the classical method and our method for n=9. These methods
are labeled as “I” and “II”, respectively. Due to the symmetry,
only the coefficients,ai, i = 1 : : : r, are presented. For method I,
the coefficients,ai, are the result of (5) and taken from [7]. For
method II, the coefficients are the result of (26), (27), and (11).

In all these cases, the method presented in this paper produces
coefficients that are very close to the output of (5) with very few
computations.

8. SIMULATIONS

In this section, we will apply the L-filter with proposed coefficients
and some other filters to a noisy signal. The signal is a portion of
a received cable channel data stream. It is up-sampled and dis-
played in Figure 2-a. This data is obtained from Signal Processing
Information Base (SPIB) data repository of Rice University.

Since the performances of the filters for the other noise types
are discussed in section 7 and / or more predictable, we added U-
shaped noise (� = 0:5) to the signal. The noisy signal is shown in
Figure 2-b.

The filter types, we use for the restoration of this signal are
median filter,�-trimmed mean filter (� = 0:3), moving average
filter, outer-mean filter and, L-Filters with coefficients obtained by
Method I and Method II. The signal-to-noise ratios for n=3, n=9,
and n=25 are listed in Table 6.

The output of the Method II is presented in Figure 2-c.

9. CONCLUSION

In this paper, we have presented a very fast design method for L-
filters by approximating the inverse of the covariance matrix of the
ordered noise random variables.

From the results in section 7 and section 8, it is concluded that,
our proposed approach to compute the coefficients of an L-filter
can be employed in all applications where the speed of the design

Table 1: U-shaped distribution for n=9

Method a1 a2 a3

I 0.5548 -0.0263 -0.0146
II 0.4586 0.0068 0.0092

Method a4 a5

I -0.0099 -0.0081
II 0.0254 0.0000

Table 2: Parabolic distribution for n=9

Method a1 a2 a3

I 0.3403 0.0613 0.0443
II 0.3105 0.0755 0.0513

Method a4 a5

I 0.0362 0.0357
II 0.0426 0.0402

Table 3: Gaussian distribution for n=9

Method a1 a2 a3

I 0.1111 0.1111 0.1111
II 0.1300 0.1072 0.1054

Method a4 a5

I 0.1111 0.1111
II 0.1049 0.1048

Table 4: Laplacian distribution for n=9

Method a1 a2 a3

I -0.0190 0.02904 0.0697
II 0.0000 0.0000 0.0000

Method a4 a5

I 0.2380 0.3647
II 0.0000 1.0000

Table 5: Uniform distribution for n=9

Method a1 a2 a3

I 0.5000 0.0000 0.0000
II 0.5000 0.0000 0.0000

Method a4 a5

I 0.0000 0.0000
II 0.0000 0.0000
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(b) Noisy Signal
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(c) Restored by the Proposed Method

Figure 2: (a) The original signal is obtained by up-sampling a por-
tion of a received cable channel data stream. (b) The signal in (a)
is corrupted with U-shaped additive noise� = 0:5 (c) The cor-
rupted signal in (b) is restored by the L-filter whose coefficients
are computed by the proposed method. The filter window size is
25

Table 6: Signal-to-Noise Ratio’s (dB)

n = 3 n = 9 n = 25

No Filter 0.2798 0.2798 0.2798
Median 0.3702 0.5229 0.8082

TriMean 0.3702 0.6886 1.0702
Mean 0.7449 1.2056 1.4923

MidPoint 0.8622 1.8106 1.5794
Method I 0.8669 1.8106 1.5829

Method II 0.8622 1.6153 1.5899

is important. An example to these applications is the real-time
open-loop adaptive filtering of noisy signals. In this application,
the noise type has to be estimated and a corresponding L-filter has
to be designed in real-time for every data set. Especially when the
sample size (or equivalently the window size) is large, the use of
the proposed approach is necessary.
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