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1. INTRODUCTION

The linear theory of prediction is capable of performing long term
forecasting when the observed time series is linear. For the chaotic
signals, where linear modeling techniques are insufficient, nonlin-
ear approximation theory can be used effectively for predicting.
Long-term prediction however, is always difficult to achieve for
such signals because of the amplification of errors in each predic-
tion step.

Prediction of chaotic time series dates back to the work by
Farmer and Sidorowich [1] who employed the local linear poly-
nomial approximation based onK nearest neighbors after time
delay embedding of the signal in state space. Other studies such
as higher order polynomial functions [1, 2], radial basis functions
[2, 3], and neural networks [4, 5, 6, 7] have limited success in
achieving long-term prediction of chaotic signals especially in the
presence of noise. Since nonlinear signals are very sensitive to
noise, it often becomes a problem to apply nonlinear techniques
to estimate parameters such as correlation dimension, Lyapunov
exponents and prediction error.

2. METHODS

Given a time seriessi, a state space trajectory is reconstructed
usingm-dimensional state vectors

xi = [si; si+� ; ::::; si+(m�1)� ] ; (1)

where� is the time delay andm is the embedding dimension [8].
For� -step ahead prediction ofsi, a nonlinear mapf can be defined
on this trajectory as

f(xi) = si+m� ; (2)

wheref can be approximated using local or global polynomial
kernels [1, 2, 9], neural networks [5], radial basis functions [2, 3]
or wavelets [10].

2.1. Local Linear Polynomial Approximation

The simplest approach to local polynomial representation is the
K nearest neighbor local linear (KNNLL) approximation. A local
nonlinear approximation tof fits a hypersurface to theK nearest
neighbors ofxi. In the KNNLL approach, hyperplanes are used
to approximatef . The time seriessi is divided into training and
prediction data sets. For a vectorxp in the training set, the corre-
spondingK nearest neighbor vectorsxp1 :::xpK in the training set
are determined using a suitable norm (e.g. Euclidean), and a least

squares optimization is performed based on their� -step ahead pre-
dictions

f(xp1) = sp1+m�

f(xp2) = sp2+m�

...
...

...

f(xpK ) = spK+m� : (3)

If f is to be approximated by a hyperplane with parametersLj

in the vicinity of the vectorxp, then Eq. (3) becomes
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whereLj = [L0L1L2 � � �Lm]. Least-squares optimization of
Eq. (4) yields a local linear approximation off around the vector
xp. The hyperplane parameter vectorLj can be used for� -step
ahead prediction as

ŝp+m� = [1 xp]Lj
0: (5)

Using all the training vectors (as neighbors) for optimization cor-
responds to autoregressive AR modeling which can be expressed
in terms of the data pointssi as

si =

mX
k=1

aksi�k + �i ; (6)

where theak’s are the AR coefficients,m is the model order and
�i represents the unpredictable portion of the signal.

2.2. Radial Basis Function (RBF) Approximation

The radial basis function approximation is a single hidden layer
network with one of the following radially symmetric functions in
each node such as thin plate spline function

�(z) = z2log(z) ; (7)



the multiquadric function,

�(z; �) = (z2 + �2)1=2 ; (8)

or the gaussian function,

�(z; �) = exp(�z2=�2) ; (9)

� being a positive scalar. The overall input-output relation can be
expressed as

f(xi) =

nX
j=1

�j�(kxi � cjk) ; (10)

wherecj are the optimal centers andn is the number of nodes.
There are several methods of determining the optimal�i and

ci in Eq. (10). One efficient technique called the orthogonal least
squares (OLS) algorithm is described in [11]. Assuming that the
nonlinear RBF function is chosen, the regression equations for the
network can be expressed as

xi =

nX
j=1

�j�(kxi � cjk) + �i; 1 � i � N ; (11)

where� is the approximation error andN is the number of training
inputs. Eq. (11) can be expanded in matrix form as
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where�ij is the output of thejth node to theith input vector and
the�i are the weight parameters to be estimated. More concisely,
Eq. (12) can be expressed as

Y = ��+E : (13)

The orthogonal least squares method consists of transforming the
columns of� into a set of orthogonal basis vectors where� can
be expressed as

� =WB ; (14)

where the columns ofW are orthogonal and

B =

2
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Eq. (13) can be rewritten as

Y =W�+E ; (16)

where� satisfies the triangular system

� = B� : (17)

The OLS solution for� is

�̂ = (WTW)�1WT
Y (18)

2.2.1. The OLS Algorithm

Step 1; for1 � i � n, compute

ui = �i (19)


(i) = ui
T
Y=(ui

Tui) (20)

e(i) = 
(i)2ui
Tui=(Y

T
Y) (21)

Find ê1 = maxfe(i)g, 1 � i � n, and select


(1) = 
ik (22)

w1 = �i1 (23)

At thekth step,k > 1 for i 6= i1; ::::; ik�1, compute

�ij = uj
T�i=(uj

Tuj); 1 � j < k (24)

wi = �i �

k�1X
j=1

�ijuj ; (25)


(i) = wT
i Y=(wi

Twi); (26)

e(i) = 
(i)2wi
Twi=(Y

T
Y) (27)

Find êk = maxfe(i)g, 1 � i � n, i 6= i1; ::::; ik�1, and
select

�jk = �j;ik ; 1 � j < k (28)


(k) = 
(ik) (29)

uk = �ik �

k�1X
j=1

�jikuj (30)

Once theB and� are found� can be determined by solv-
ing the upper triangular system given in Eq. (17).

The procedure is terminated when the sum of maximum errors in
each step reaches to a certain tolerance value, i.e.

MX
j=1

êj < 1� � : (31)

2.3. Neural Network Approximation

The multilayer perceptron (MLP) is a network topology which al-
lows for an appoximation of any continuous function within an
arbitary accuracy. The input/output relation for thekth layer is
given as

zi
(k) =

nk�1X
j=1

�
(k�1)
ij x

(k�1)
j + �

(k)
i (32)

x
(k)
i = �(z

(k)
i ) (33)

where�ij (k) and�j (k) are the node connection weights,nk is
the number of hidden nodes in thekth layer and� is the node
activation function which is typically chosen as

�(z) =
1

1 + exp(�z)
: (34)



The output node usually does not have a threshold parameter and
yields a linear combination of the outputs from the previous layer

ŷ = xi
(L) =

nL�1X
j=1

�
(L)
ij x

(L�1)
j ; (35)

whereL is the number of layers in the network. Nonlinear opti-
mization techniques are used for the estimation of the parameters
in these models. One of several algorithms that falls in this cate-
gory described in [11] is the prediction error algorithm with batch
processing.

2.3.1. Prediction Error Learning Algorithm for a Single Hid-
den Layer

The following definitions will be made for a single layer network:

� m: dimension of the input vectors

� r: number of hidden nodes

� xi(t): ith entry of them dimensional input vector

� �i: threshold of theith hidden node

� wij : connection weight fromjth entry of the input vector
to theith hidden node

� ai(t): output of theith hidden node

� vi: connection weight fromith hidden node to the output
node

� ŷ(t;�): output of the output node.

The input/output relationship can be expressed as

ŷ(t;�) =

rX
i=1

viai(t) =

rX
i=1

vi�(

mX
j=1

wijxj(t) + �i) ; (36)

All the parameters i.e the weights and thresholds of the network
havingm dimensional inputs andn hiddden nodes can be arranged
into aP dimensional parameter vector

� = [�1 � � � �P ]
T ; (37)

whereP = r(m + 1) + r. The difference between the system
output and the network output

�(t;�) = y(t)� ŷ(t;�) ; (38)

is called the prediction error. The gradient ofŷ(t;�) with respect
to� is aP dimensional vector

	i(t;�) =
dŷ(t;�

d�

=

8>><
>>:

oi(t) if �i = vi; 1 � i � r
vioi(t)(1� oi(t)) if �i = �k; 1 � i � r
vioi(t)(1� oi(t))xj(t) if �i = wkj ; 1 � k � r;

1 � j � m
0 otherwise

;

(39)
The optimization criterion is chosen as

JN (�) =
1

2N

NX
t=1

�T (t;�)�(t;�) ; (40)

whereN is the length of the training data. The recursive learning
algorithm is

�(k) = �(k � 1)� ��(�(k� 1)) ; (41)

where� is a positive constant which guarantees convergence and
�(�) is the gradient search direction

�(�) =M(�)(�rJN(�)) ; (42)

where

rJN (�) = �
1

N

NX
t=1

	(t;�)�(t;�) ; (43)

is the gradient ofJN (�) with respect to�. M(�) is chosen as
the inverse of the approximate Hessian ofJN (�)

M
�1(�) = H(�) =

1

N

NX
t=1

	(t;�)	T (t;�) ; (44)

2.4. Nonlinear Prediction

The nonlinear approximation methods described previously can be
used for predicting the future values of a nonlinear time series.
Generally, the data is divided into a training and a prediction set.
Then the nonlinear approximation of the trajectory is performed
using the vectors in the training set. The approximated map is
used for predicting the future values in the prediction set. More
specificially, given a time series withN1 points for training and
N2 points for prediction, the number of embedding vectors are
N1+N2�(m�1)� . The firstN1�(m�1)��1 vectors are used
for approximation of the map. Starting from theN1� (m�1)� th
vector, the nextNT = N2 �M� + 1 vectors are input to the map
to performNT � -step ahead predictions whereM is the maximum
number of iterative prediction steps. Forp� -step prediction, the
prediction routine is iteratedp times for each vector chosen from
the prediction set. The relative mean squared error (RMSE) for
p� -step iterative prediction can be calculated as:

�(p) =

PNT
k=1

(sk+q � ŝk+q)
2

NT �2
; q = N1 + (p� 1)� ; (45)

wherefŝig andfsig are the predicted and real sequences of data
points respectively and� is the standard deviation offsig.

3. APPLICATION

The nonlinear prediction methods described above were tested on
simulated data consisting of the discrete Henon map. The Henon
map is given by

xn+1 = 1� axn
2 + bxn�1 ; (46)

where the parameters are chosen asa = 1:4 andb = 0:3 with the
initial condition

4. RESULTS

The KNNLL, the RBF and the MLP approximations were applied
to the time series. 500 points were used for the training. The pre-
diction error (RMSE) was calculated over 500 points in the testing
set. The mean squared fitting error (MSFE) was also calculated for



each method. The optimal value ofm and� were searched for dif-
ferent values to obtain the best prediction performance. The num-
ber of neighbors for KNNLL, the number of centers for RBF, and
the number of hidden nodes for MLP were optimized to achieve
the lowest possible MSFE. The iterative prediction step after which
the RMSE exceeded10% was calledmaximum range of prediction
and denoted by�. The prediction performance for KNNLL, RBF
and MLP approximation on Henon data are given in Table 1. For
the KNNLL and RBF methods the fitting error cannot be reduced
indefinitely. A maximum prediction range is obtained for a mini-
mum fitting error. Increasing the number of neighbors in KNNLL
or nunmber of centers in RBF does not reduce the fitting error and
increase the prediction range. On the other hand, for the MLP, as
the number of hidden nodes are increased the fitting error reduces
and the prediction range increases.

Table 1: Prediction Range for KNNLL, RBF and MLP approxima-
tions. MSFE is the logarithm of the mean squared fitting error.n
is the number of neighbors in KNNLL,p is the number of centers
in RBF, andq is the number of hidden nodes in MLP.

KNNLL RBF MLP
n MSFE � p MSFE � q MSFE �
8 -4.4 7 12 -3.0 3 8 -2.8 3
12 -3.3 6 16 -3.1 3 10 -4.5 6
16 -3.3 6 20 -4.1 6 12 -4.3 7
20 -3.7 6 24 -4.3 6 14 -4.3 7
24 -3.5 5 28 -4.4 7 16 -6.7 12
28 -3.3 5 32 -4.6 8 18 -6.3 12
32 -3.1 5 36 -4.2 8 20 -6.8 13
36 -3.0 5 40 -3.6 6 22 -9.1 17
40 -2.9 4 44 -3.2 5 24 -9.7 18

5. DISCUSSIONS AND CONCLUSIONS

There appears to be a relation between the MSFE and the�. Re-
ducing the MSFE yields a higher� hence a better prediction per-
formance. The MLP seems to have the capability of reducing the
MSFE to an arbitrary precision provided that the number of hidden
nodes and the number of iterations for recursive paramater estima-
tion are high enough. KNNLL and RBF methods do not seem
to have such an accuracy when it comes to approximate the map,
given a limited amount of data. There is an optimum value, for
the number of neighbors in KNNLL and for the number of centers
in RBF, that yields the lowest possible MSFE. Increasing or de-
creasing this value only deteriorates the fitting and the prediction
performance.

6. REFERENCES

[1] J D Farmer and J J Sidorowich, “Exploiting chaos to predict
the future and reduce noise,” preprint, Los Alamos, LA-UR-
88-901, 1988.

[2] M Casdagli, “Nonlinear prediction of chaotic time series,”
Physica D, vol. 35, pp. 335–356, 1989.

[3] D. Lowe D and A. R. Webb, “Time series prediction by
adaptive networks: a dynamical systems perspective,”IEE
Proc.-F, vol. 138, pp. 17–24, 1992.

[4] A. S. Lapedes and R. Farber, “Nonlinear signal process-
ing using neural networks:prediction and system modeling,”
preprint, Los Alamos, LA-UR-87-2662, 1987.

[5] A S Weigend, B A Huberman, and D E Rumelhart, “Pre-
dicting sunspots and exchange rates with connectionist net-
works,” inNonlinear Modeling and Forecasting, M Casdagli
and S Eubank, Eds., vol. 12, chapter 395–432. Addison-
Wesley, Massachusettes, 1992.

[6] A. M. Albano A. Passamante T. Hediger and M. E. Farrell,
“Using neural nets to look for chaos,”Physica D, vol. 58, pp.
1–9, 1992.

[7] J. C. Principe A. Ratie and J. M. Kuo, “Prediction of chaotic
time series with neural networks and the issue of dynamic
modeling,” Int J Bifur and Chaos, vol. 2, pp. 989–996, 1992.

[8] F Takens, Detecting strange attractors in turbulence, vol.
898 ofLecture Notes in Mathematics, pp. 366–381, Springer,
Berlin, 1981.

[9] K Stokbro and D K Umberger, “Forecasting with weighted
maps,” inNonlinear Modeling and Forecasting, M Casdagli
and S Eubank, Eds., vol. 12 ofSFI Studies in the Sciences
of Complexity, pp. 73–93. Addison-Wesley, Massachusettes,
1992.

[10] L Cao, Y Hong, H Fang, and G He, “Predicting chaotic time
series with wavelet networks,”Physica D, vol. 85, pp. 225–
238, 1995.

[11] S. Chen and S. A. Billings, “Neural networks for nonlin-
ear dynamic system modelling and identification,”Int J of
Control, vol. 56, pp. 319–346, 1992.

[12] M Casdagli, “Chaos and deterministic versus stochastic non-
linear modeling,”Journal of Royal Statistical Society B, vol.
54, pp. 303–328, 1992.


