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ABSTRACT

New developments in nonlinear dynamical systems are per-
mitting Volterra and Wiener nonlinear functional series rep-
resentations to be optimally approximated by artificial neu-
ral networks, which are capable of adaptation, learning and
evolution by training with or without supervision.The frame-
work based on Generalized Fock Space, enabling these de-
velopments is briefly reviewed. In particular, the realization
of a best approximation to Wiener’s Laguerre / Hermite rep-
resentation in terms of a dynamical functional artificial neu-
ral network (D-FANN) is presented. Applications of this
technology to emerging telecommunications systems such
as wireless, digital subscriber lines, and cable TV are dis-
cussed.

1. INTRODUCTION

In the analysis and design of large-scale nonlinear dynami-
cal systems, the two representations proposed by Vito Volterra[1]
and Norbert Wiener [2] have played an especially prominent
role.

Let f denote the input-output function of a large-scale
nonlinear dynamical system. We may write

y(t) = f(x)(t) (1)

where the inputx and outputy are real-valued functions on
an intervalI of the real line, andf is a functional which
sendsx to the valuey(t) of the outputy at time t. Even
though we limit the below discussion to signals, the result
trivially generalizes to the case of images,x then being de-
fined on a two-dimensional domain.

In the Volterra representation [1],f is expressed as an
abstract (functional) power series inx of the form
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where the kernels satisfy appropriate conditions.
The Wiener representation [2] is of the form

y(t) = H(Lx(t)); (3)

whereL is an infinite linear differential dynamical system
represented by a Laguerre network, andH is a Hermite ex-
pansion defined on the range ofL ( See Fig.1 ). Details are
described in [2] and are omitted because their description
would require too much space.

2. D-FANN BEST APPROXIMATION OF
VOLTERRA AND WIENER SERIES

While the above two representations are powerful and espe-
cially relevant to emerging computer and information tech-
nologies, they have some important limitations. One is that
they are computationally intensive. Another is that they are
too difficult to implement. Also, in the way these implemen-
tations were originally developed, they do not lead to sim-
pler representations which can be justified rigorously and
which are capable of adaptation and learning.

In order to overcome these difficulties, the author and
collaborators developed a broader-based rigorous framework
for obtaining a best approximation~f of the input-output
mapf of a large scale nonlinear dynamical system [3]-[6].
This framework, briefly overviewed in the remaining part
of this paper, combines features of the representations (2)
and (3) and leads to optimal realizations of~f in the form of
artificial neural networks[7]-[15]. These are called by the
author OI (Optimal Interpolative), OS (Optimal Smooth-
ing), OMNI (Optimal Multilayer Neural Interpolating), and
OSMAN (Optimal Smoothing Multilayer Artificial Neural)
networks. Two additional new generic classes of these net-
works[13] are called functional artificial neural networks
(FANNs) and dynamical FANNs (D-FANNs). They are de-
tailed elsewhere and hence will not be discussed in this
write-up.

In the broader-based framework proposed by the au-
thor, f is assumed to belong to a Generalized Fock Space



(GFS)F of Volterra functional series.F constitutes a gen-
eralization of the conventional Fock Space, the state space
of non-self interacting Boson fields in quantum-field the-
ory. Specifically,F is a Reproducing Kernel Hilbert Space
(RKHS) with a reproducing kernelK which can be ex-
pressed explicitly often in closed form. The best approx-
imation ~f of f is extracted from the training data by re-
quiring that ~f be the minimum norm element inF which
satisfies the training input-output data constraints, i.e.~f is
the unique solution of the problem

min kfkF (4)

such that
f(xi) = yi; i = 1; : : : ;m (5)

wherek�kF denotes the norm inF , and(xi; yi); i = 1; : : : ;m
are input-output training pairs. The solution~f to (4) and (5)
satisfies a minimax error criterion and is of the form

y(t) = f(x)(t) = L2H(L1x(t)) (6)

whereL1 andL2 are linear operators andH is a zero-memory
non-linear operator. This solution can be naturally realized
as a two-layer artificial neural network. In this network,
H(L1�) is implemented by the first (nonlinear) layer andL2
by the second linear layer. By appropriate choice of the sig-
nal spaces in whichx andy reside, these layers can be made
analog or digital. If the inputx is analog and hence the op-
eratorL1 is analog and implemented by a linear differential
dynamical system, we call the artificial neural network rep-
resenting (6) a D-FANN (Dynamical Artificial Neural Net-
work) [13]. Such networks recently proposed by the author
permit intelligent processing of analog signals. In particu-
lar, if L1 in a D-FANN is implemented as a Laguerre net-
work, then the resultant D-FANN constitutes the best ap-
proximation to the Wiener representation (3) and is shown
in Fig. 2. This figure shows that Wiener’s Laguerre Net-
work can be used as the filter bank for the initial stage of a
D-FANN [13].

3. APPLICATIONS

Nonlinear filters based on the above generic structural mod-
els can be applied to the solution of a number of problems in
digital communications. Within the bounds of the time al-
lotted to this plenary lecture, the applications of these filters
to one or more of the following problems will be discussed:

� Nonlinearities in QAM data transmission systems: Mi-
crowave radio and voice modems.

� Nonlinear satellite channel equalization.

� Distortion in high-density recording channels.

� Nonlinearities in echo cancellation.

� Nonlinear intermodulation distortion: CATV chan-
nels and FDM systems.

� Nonlinearities in optical fiber transmission: semicon-
ductor laser diodes.

� Analog-to-digital conversion nonlinearities.

� Nonlinear filters in Phase Locked Loop techniques.

4. CONCLUSION

We presented a framework whereby functional artificial neu-
ral networks (FANNs) become a natural vehicle for imple-
mentation of Volterra and Wiener filters and the general-
izations of these filters are described here. Applications to
emerging digital communication systems will be discussed
in the lecture.
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Figure 1: The Wiener Nonlinear Functional Series Model
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Figure 2: D-FANN Realization of the Best Approximation to the Wiener Model of Fig.1


