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ABSTRACT symmetric or anti-symmetric and have non-minimum phase. It
can be easily shown that if a transfer function of the above type

In this work we propose to design a minimum phase FIR has a zero at the locatian, it will also have the zeros/r;
digital filter transfer function from a given linear phase FIR |

transfer function which has identical amplitude. We are fi andl/r; for |r [#1.

concentrating on very high degree polynomials for which |ets suppose that the roots of the polynontiez) above are
factorisation procedures for root extraction are unrellab_le. _We denoted byr, . We employ the following notation:

also assume that the polynomials have roots on the unit circle. ) A o
The approach taken involves the use of the Cauchy Residué [j =Tjin if the rootr; is inside the unit circle.
Theo_rem applied to _the logarithmic derivative of_ the tra_nsfer * I =Tjoy if the root r; is outside the unit circle.
function. This leads into a set of parameters derivable directly _ ) ) L

from the polynomial coefficients that facilitate the factorisation * j =Tjo if the rootr; is on the unit circle.

problem. The concept is developed in a way that leadsThus we can write

naturally to the celebrated Newton Identities. In addition to 0 M m 0
solving the above problem, the results of the proposed design  H(z) = é_l (z- rjin)%j (z- rjout)%j (z-rjo)0 or
scheme are very encouraging as far as robustness and j j j g
computational complexity are concerned. H(2) = H pin (2H max(2)H o (2)

1. INTRODUCTION where H ., (2) is the minimum phase part dfi(z) and

The design of Finite Impulse Response (FIR) digital filters has Humax(2) is the maximum phase part & (z) . The factor

attracted considerable attention [1-4]. An influential Ho(2) contains all roots that are on the unit circle.
representative of the methods is based on the Remez exchang@ome useful general points need to be made.

algorithm. However, the Remez and also most proceduress  The group delay of amth order linear phase real FIR
assume a linear phase response with the consequence that the ., cfer function is 7(0)=n/2. For a range of
resglting _filters do not have the lowest group del_ay. Direct_ applicaions  with stringent _ specifications as  in
design with prespecified phase response is possible. In this telecommunications, a typical FIR digital filter transfer

work we concentrate on the following problem. function may be of length 200 or more. For such filters

“Given a linear phase FIR digital filter transfer function to h del b desirabl ticularly when it
determine an FIR digital filter which has identical amplitude € group delay may be ungesirable particutarly when |
approaches large values, such that bidirectional human-to-

response but is of minimum phase”. h ication i t viabl

At first glance this may appear to be a trivial problem. Indeed a uman communication IS not vViable. L

naive approach would be to factorise the given FIR transfer’ Oﬂen In many qpphcatlons the phase response is either

function and replace each of the zeros outside the unit circle unimportant or |rrelgv§nt. For gxgmple In_some speech

with its reciprocal. This, in principle at least, would leave the processing areas it Is not S|gn.|f|cant. T.h's fqrm of

overall amplitude response unaltered and would make the fre.ed.om IS not normally taken intoconsideration by
existing FIR filter design methods.

resulting transfer function of minimum phase. However for a At te the desi ¢ mini h FIR filters f
large class of polynomials, factorisation is an unreliable 7\t 8Ny raté, the design ol minimum phase ters irom

process especially when some of the zeros are located on thiinear phase FIR filters with specific amplitude requirements
unit circle would inevitably lead to a stage of factorisation in order to

A new approach for polynomial factorisation without root §e|ect .t.he apprltszrla}te zeros, and hence problems with
finding is attempted. The approach involves the use of the'MPrECISIONS would arise.

Cauchy Residue Theorem applied to the logarithmic derivative 3. PROPOSED DESIGN ALGORITHM

of the transfer function. This leads into a set of parameters, the

root moments derivable directly from the polynomial At this section we aim to derive the required nonlinear phase
coefficients that facilitate the factorisation problem. In addition FIR filter transfer functions from corresponding linear phase

to solving the above problem, the results of the proposedfunctions which are assumed to be designable by standard
design scheme are very encouraging as far as robustness amgeans as the Remez exchange algorithm.

computational complexity are concerned. Let the linear phase real FIR filter transfer function be

5  PRELIMINARIES H(2) = H in (2H max(2H,(2) as already indicated.

Let also n, be the number of zeros dfi,(z) and n; the
We consider a linear phase FIR digital filter transfer function

having the following form number of zeros ofH ,;,(z) and to the extent off ;5 (2) -

If the zeros ofH ;;,(2) are of the formp; e*1% we can write

n
H(2)=2" +h 2" + 12" 2+t hy =[] (2 1) € 5 )
i=1 Hmin(2) = [1(z° = 2p; cosf z+p;“) .

Linear phase, real FIR digital filter transfer functions are



Suppose thaH mm(eje gan be written as
Hunin (1) = A(©)e!#®
where @(0) is a nonlinear function.
BecauseH (z) is linear phase, the zeros &f,,,(z) are of

pieije‘ . Thus, we can writdH ., (2) as
i

H max (2 = [ (0i°2% - 2p; cosd; z+1)
=2"[] (pi%2 -2p; cos;z L +272) = Z"H]. (2)
or

the form

H max(eje) =eln® A(g)e‘j¢(9) )
Hence
[Hmin (81%) Fl Hinax (819) |
as already expected.
On the unit circle we have

. n,/2 n,/2
Ho(el) = [ (22 -2cos;z+1) = [] «z-2cosh; +27)
r=1 r=1

n,/2 .

=2"/2 [ (2cos8 - 2cosd; ) = l"P/2B(g)
r=1

Hence

H (eje) - ej(n‘ +N,/2)6 [A(e)]z B(e)
The group delay is

7(8) = (ny +”7°)=§.

Thus, in principle, to obtain a minimum phase version of the

given transfer function we can follow the steps below.
Step 1

Either determineH ,,,(2) and reflect its zeros into the unit
circle, or determineH ;,(2) and make each of its zeros of

multiplicity 2.

Step 2

Find H,(2)

Step 3

Construct the transfer function a$2) =[H i, (21? Ho(z . )
Then we shall havéT (€/9) |g|H (el?) .|

Both Step 1 and Stepiply at first glance that a root finding

procedure may be required. However, as already pointed out,

n
Sp=n "4 ey = 3" @)
2

where ; is theith root of (1). The roots of (1) are not needed
explicitly to compute S, in that these parameters can be
determined directly from the coefficient§. The parameters

Si are known as the root moments of the polynonhiglz) .

They are related to many signal processing operations,
dominant amongst which is the differential cepstrum. However
it would be limiting to think of them purely in this sense since
a wider perspective enables us to provide answers to many

digital signal processing problems that have been, hitherto,
unattainable [7].

4.1

By writing the polynomial (1) as a product of factors we can
nH

write H'(2) = Zﬂ
2=

Iterative Estimation of Root Moments

and given thatH (r;) =0 we have

H'(z) =nz" 1+ (S, +nh)z"2 +(S, + hS, +nh,)z"3 +
v+ (S + W Seg +hpSpop o+ nhg)Z T
By direct differentiation of equation (1) we have
H'(z) =nZ" 1+ (n-Dhz" 2 +(n-2)h,z" 3 +
et (n=mh,zZ" M 4 )
Hence by equating the last two expressions we obtain the

following fundamental relationships known aBlewton
Identities

S +nhy =(n-Dh; or S, +h; =0

S, + S +nh, =(n-2)h, or S, + S, +2h, =0

and generally

Sm * WS-y + hSm +--- +nhyy = (N—m)hy, or

Sm *+ Smq + Sy +---+ mhy, =0 4)
When the signal treated by this means is infinitely long, the
above equation is repeatedly used to calculate successive
values of the root moments. If the signal is of finite duration
thenform>n S, +hSy4 +hySy—5 +---+hySp-n =0.

The same relationship as above can be used to calcgjate
for m<0 by inserting successively values fan equal to
n-1 n-2, n-3--etc. It should be noted thas,, for

root finding procedures are known to be inaccurate andeither . positive or negqtiye values d’” are evaluated
unreliable for large order polynomials. Factorisation without recursively from the coefficients of equation (1) alone.
root finding forms also the basis of the procedure developed inThe above relationships also follow from the definition of the

[1].[3-4],[9]. In [1],[4-5] use is made of the real cepstral

differential cepstrum and are essentially included in [6].

parameters, where the cepstral aliasing problem is recognisediowever in [6], n is assumed to be finite and a priori known.
and careful procedures are recommended to reduce its effectdhis is only a minor point as the iteration in equ.(4) do not
In [3] they approach the factorisation problem from the require n to be finite and, hence, it can be applied to infinite
Lagrange interpolation point of view. In the above proceduresduration signals. It is sufficient at this juncture to observe that
it is assumed that the zeros of the transfer function on the uniboth finite duration signals and infinite duration signals of
circle are a priori known. We make no such assumption in ourexponential entire function type interpretation can be treated in

present work.

the same way [7]. To facilitate the exposition, the parameters

An alternative and direct polynomial construction procedure in (2) are referred to as the root moments. This terminology
without having to go through root estimation procedures is emphasises the deviation from the differential cepstrum.
possible through the root moments of a given polynomial [7- Essentially one can interpret the set of equations (4) as a

8].
4, ROOT MOMENTS

In relation to polynomials typically given as in equ.(1) Newton

defined a set of parameters given by

transformation of the coefficienth,} to the parameter set
{Sm} of the same cardinality. The transformations are one-to-
one and hence we can have the following existence corollaries.
Corollary 1~ Given a set of coefficientgh,} of the nth
degree polynomial in equation (1) which has roots



{r}i=1--.n, there exists a set of parameters which for =6, can be computed as

{Sif m=1-n, S =n, given by equ.(2) H'(p(B)el*) =el" M DET{(n-)h p" X6} (10)
Corollary 2 Conversely given a set of root momelﬁ&?n Similarly we have
there exists a set of coefficientfh,}r=1---,n, for a H(p(6,)e'%) = e DFT{h p™ (6,)} 1)

polynomial as in equ.(1l) determinable recursively through gnd hence
equ.(4). The proofs are self evident from the above analysis. . i
U@ The S 6y —eia DFT =D o™ 0}

4.2 Non Iterative Estimation of Root Moments DFT{h p"" (6, )}
The Newton Identities yield the root moments of the entire ng(e) . m
signal, encompassing not only those roots that lie within the do * Jp(@)%? ©)

unit circle but also those that are outside the unit circle.
However, it is often the case that a specific factor of a given
polynomial H(z) is required, such as the minimum phase

factor and in this case its root moments can be determined in a 5. THE ALGORITHM
different manner.

With N a power of 2 we can use the Fast Fourier Transform
(FFT) algorithm.

_ 0 ) The algorithm relies on the direct and accurate extraction of
Let a closed contouf defined asz = p(6)e’” contain the  the appropriate factors from the FIR linear phase transfer

roots of the required factor dfl (z) . Then it follows from the  function H(z) needed to implement (z) described above.
Cauchy residue theorem that the root moments of this factorThe FIR linear phase transfer function is designed using the
are given by Remez or any other similar existing algorithm according to the
| _r_ 1 _H'(2 mg 5 specifications of the user. The designed filter has roots on the
r (M) = S, _Z_,jfr H(z)z z (3 unit circle. For that reason we cannot obtain the minimum
This is evident from the fact that phase part by integrating around the unit circle. The approach

1 1 we take follows the steps below.
r m
S =— z'dz

25 2 @)

i Step 1:
and the contribution to the integration are those due to thoséNe integrate around a circle centered at the origin and of
r,'s that lie withinT . (It is assumed that we have no zeros on radius less than unity. With a careful choice of the contour
r) radius, the integration gives the root momegtém) = S;,, (m)
In practice the contour integration will have to be effected that correspond to that part of the original FIR transfer function
directly from the coefficients oH(z) and this can be done Which has its zeros inside the unit circle, namely the minimum

quite conveniently through the use of the DFT as it is shown Phase part.

below. Obviously the radius of the contour is of crucial importance.

. B io We have to ensure that the selected circle includes all the roots
Equation (5) becomes far= p(6)e of the minimum phase part of the original polynomial.

s : This is examined separately below.
Sh=—= [9(@)el™ g ©) P
N on Step 2:

where _ We integrate around a circle centred at the origin and of radius

_H'(p(6)e!?) dp(d) . . greater than unity. Again the radius of the contour must be
9(6) = H(p(©)e?) E de + JP(G)Q’m(G) () selected carefully. A good selection in Step 1 yields a

) o ) ) ~correspondingly good selection for Step 2, that is the reciprocal
Discretisation of equation (6) suitable for DFT use requires of the radius selected in Step 1. The integration produces the
parametersS,(m) = S, (m) + Sy(m) where Sy(m) are the

values 6 :Ek, k=01--,N-1 for an N -point
N root moments of that factor of the original FIR digital filter

transform. Therefore, we have the inverse DFT transfer function which has its zeros on the unit circle.
r_ 1 N2 i(m+1)6,
Sh==5 g(6)e ™V 8 .
iN & 9(6x) (®) Step 3:

i th ‘  int tion is th it circle:l4=1 th The required transfer function has the root moments
e contour of integration is the unit circl |z| = en S(m) = 25, (M) + Sy (M) , or S(m) = S;(m) + S, (m).

the resulting root moments from the above, correspond to those

of the minimum phase component bf(z) . In this case we  step 4:

have the special form of (8) From Step 3 and from the Newton's Identities we form the
t 2 1NTH(8)) (M8, required minimum phase FIR filter transfer function which is
S mn N k_orek)e © the minimum phase version of the initial mixed phase transfer

) . function. The order of this is the same as the order of the
For either equ.(7) or equ.(8) the computationg@f, ) can be original polynomial and equal t6,(0) + S, (0) .

done through the use of the DFT also. 5.1 Estimation of the radii of the integration

It is observed that oz = p(9)e!® we can write The radii of integrations in the above algorithm must be chosen
) o on-l L - S0 as to enclose the appropriate zeros of the given FIR digital
' 0y _ Ai(n-1)8 - 10 \e-ii0
H'(p()e)) =™ _Z(” —ihi " (B)e™ filter transfer function. Thus forS;(m) the radius of the

i=0
integration contourr must be such that>r >max(|r, |),



while for S,(m) the radius of the integration contonr must Further work is necessary to explore the options open here.

6. EXPERIMENTAL RESULTS

The following example is a low pass equiripple FIR digital
filter of order 80, with linear phase, designed using the Remez
algorithm. The pass band occupies the frequency samples from
0 to 204, the transition band from 205 to 225 and the stop band
from 226 to 511 samples (with 512 being the Nyquist
frequency).

Figures 1 and 2 show the amplitude response and the location

be chosen such thak r < min(|roy )

For equiripple filters the required radii can be estimated as
follows.

Let us remove the linear phase factor from the frequency
response to yield only a real function. This function now we
shift vertically half way between its maximum and minimum

values.

An approximate representation of this zero pattern, is given

almost everywhere by of the roots within thez- plane, of the mixed (and linear)
C(2=(z"-a"@"z"-1) (12)  phase FIR system transfer function, designed using the Remez

The above transfer function is equiripple, linear phase and itsalgorithm.

zeros are located on two circles controlled by the paranaeter ~ Figures 3 and 4 show the amplitude response and the location

We now take the magnitude of it. Since the initial transfer Of the roots within thez-plane, of the minimum phase

function is equiripple the result of these operations will be a version of the same system using the proposed designed

real positive function of equiripple modulus almost a[gorlthm.

everywhere. The ripple variation remains unchanged, namely,Figure 5 shows the phase response for both systems.

a normalised response will vary betwedr & and 1-0 Figure 6 shows the group delay for both systems.

almost everywhere except in the transition band. TI

amplitude characteristic is equiripple between the values

Crmax =a2" +2a" +1 andC,, =a?" -2a" + 1
The mean between the minimum and the maximum value

Mixed phase zeros

(Crax +Cmin)/2=a%" +1. To calculate the ripple, the
amplitude response is normalized, by deviding with the me

(@®" +1), so that the maximum value now become H
Py
2n n g
a“ +2a’ +1 . . £
Crax =——,———- We use the  relationship g
a”" +1 E
2n n
a“ +2a' +1 2
Crax =——, ——=1+40 5:—1
a“ +1 ah
an

The quantity d can be estimated from the initial transfe
function created by the Remez algorithm.

Hence we can estimate the radii of the circles within the zel Real part
of the required polynomials are expected to be located, usuy
the relationships Figure 1
1 In the above figure, the dotted circle corresponds to the unit

circle and the two solid circles to the ones that will be used for
the contour integrations in the proposed algorithm.

1 1

5‘1,225—’—r (—2—1)@-
2 Ve? H

For very small ripple width,a; <<1 and a, can be Frequency response

1 1.4 T T T T T

approximated t@, = %Er .
g

5.2 Discussion for Future Work

It may be the case in a system application that the reduction in
the group delay obtained by the above algorithms is more than
the required amount. Then we can improve the non-linearity in
the phase response as follows.
 The root moments corresponding to the stop band
transmission zeros remain the same as above.
»  From the rest of the zeros we can select an appropriate
number in conjugate form, for real transfer functions,
in an arbitrary fashion.
Extraction of factors of polynomials that have zeros in certain
non-circular regions can also be put into effect by integrating
around these regions. Specifically with respect to the filter

600

design problem we can determine the factor corresponding td-19ure 2: Amplitude response of the original linear phase FIR

the zeros on the unit circle by integrating along a segment of
the unit circle.

filter transfer function.



Min. phase version zeros

The original filter has a linear phase response as designed by
the Remez algorithm. The minimum phase version of it has a
non linear phase response as expected.

At the last figure the group delay of the original and the

reconstructed filters are shown. Again the range of frequency
samples of interest is the pass band. There is a significant
decrease of the group delay within the range of frequencies of
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Figure 3

The roots outside the unit circle have inverted inside, exactly

on their reciprocal roots. The number two on the figure
indicates the double roots.
Frequency response
1.4 T T T T T
; [1]
............. . . _ (2]
300 Z&) 500 600 [3]
Figure 4

[4]

The amplitude response of the reconstructed minimum phase
version of the transfer function is almost identical as the one
obtained using the Remez algorithm. 5]
The two following graphs show the phase response of the[ 1
original and the reconstructed filter respectively. The range of
frequency samples of interest is the pass band which goes from
0 to 204 samples.

[7]
Mix. Phase
0 T T T T T
; 8]
; [9]
-40 SR T S - " s
60 L L L L L
0 100 200 300 400 500 600

Fiaure 5

interest, namely, the passband.

Group delay (Mix. & Min.)
45 T T T

' Mixed'phase

A0 o - ——— ——

Minimum bhase

300 400 500 600

Figure 6
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