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ABSTRACT
In this work we propose to design a minimum phase FIR
digital filter transfer function from a given linear phase FIR
transfer function which has identical amplitude. We are
concentrating on very high degree polynomials for which
factorisation procedures for root extraction are unreliable. We
also assume that the polynomials have roots on the unit circle.
The approach taken involves the use of the Cauchy Residue
Theorem applied to the logarithmic derivative of the transfer
function. This leads into a set of parameters derivable directly
from the polynomial coefficients that facilitate the factorisation
problem. The concept is developed in a way that leads
naturally to the celebrated Newton Identities. In addition to
solving the above problem, the results of the proposed design
scheme are very encouraging as far as robustness and
computational complexity are concerned.

1. INTRODUCTION
The design of Finite Impulse Response (FIR) digital filters has
attracted considerable attention [1-4]. An influential
representative of the methods is based on the Remez exchange
algorithm. However, the Remez and also most procedures
assume a linear phase response with the consequence that the
resulting filters do not have the lowest group delay. Direct
design with prespecified phase response is possible. In this
work we concentrate on the following problem.
“Given a linear phase FIR digital filter transfer function to
determine an FIR digital filter which has identical amplitude
response but is of minimum phase”.
At first glance this may appear to be a trivial problem. Indeed a
naive approach would be to factorise the given FIR transfer
function and replace each of the zeros outside the unit circle
with its reciprocal. This, in principle at least, would leave the
overall amplitude response unaltered and would make the
resulting transfer function of minimum phase. However for a
large class of polynomials, factorisation is an unreliable
process especially when some of the zeros are located on the
unit circle.
A new approach for polynomial factorisation without root
finding is attempted. The approach involves the use of the
Cauchy Residue Theorem applied to the logarithmic derivative
of the transfer function. This leads into a set of parameters, the
root moments, derivable directly from the polynomial
coefficients that facilitate the factorisation problem. In addition
to solving the above problem, the results of the proposed
design scheme are very encouraging as far as robustness and
computational complexity are concerned.

2. PRELIMINARIES
We consider a linear phase FIR digital filter transfer function
having the following form
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Linear phase, real FIR digital filter transfer functions are

symmetric or anti-symmetric and have non-minimum phase. It
can be easily shown that if a transfer function of the above type
has a zero at the location ir , it will also have the zeros ir/1 ,

*
ir  and */1 ir  for 1|| ≠ir .

Lets suppose that the roots of the polynomial ( )zH  above are

denoted by ir . We employ the following notation:

• injj rr =  if the root jr  is inside the unit circle.

• outjj rr =  if the root jr  is outside the unit circle.

• ojj rr =  if the root jr  is on the unit circle.

Thus we can write
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where )(min zH  is the minimum phase part of )(zH  and

)(max zH  is the maximum phase part of )(zH . The factor

)(o zH  contains all roots that are on the unit circle.

Some useful general points need to be made.
• The group delay of an n th order linear phase real FIR

transfer function is 2/)( n=θτ . For a range of
applications with stringent specifications as in
telecommunications, a typical FIR digital filter transfer
function may be of length 200 or more. For such filters
the group delay may be undesirable particularly when it
approaches large values, such that bidirectional human-to-
human communication is not viable.

• Often in many applications the phase response is either
unimportant or irrelevant. For example in some speech
processing areas it is not significant. This form of
freedom is not normally taken into consideration by
existing FIR filter design methods.

At any rate, the design of minimum phase FIR filters from
linear phase FIR filters with specific amplitude requirements
would inevitably lead to a stage of factorisation in order to
select the appropriate zeros, and hence problems with
imprecisions would arise.

3. PROPOSED DESIGN ALGORITHM
At this section we aim to derive the required nonlinear phase
FIR filter transfer functions from corresponding linear phase
functions which are assumed to be designable by standard
means as the Remez exchange algorithm.
Let the linear phase real FIR filter transfer function be

)()()()( omaxmin zHzHzHzH =  as already indicated.

Let also on  be the number of zeros of )(o zH  and in  the

number of zeros of )(min zH  and to the extent of )(max zH .

If the zeros of )(min zH  are of the form iei
θρ j±  we can write
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θeH can be written as
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where )(θφ  is a nonlinear function.

Because )(zH  is linear phase, the zeros of )(max zH  are of

the form ie
i

θ
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j1 ± . Thus, we can write )(max zH  as
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as already expected.
On the unit circle we have
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Thus, in principle, to obtain a minimum phase version of the
given transfer function we can follow the steps below.
Step 1
Either determine )(max zH  and reflect its zeros into the unit

circle, or determine )(min zH  and make each of its zeros of

multiplicity 2.
Step 2
Find )(o zH

Step 3

Construct the transfer function as )()]([)( o
2

min zHzHzT = .

Then we shall have |)(||)(| jj θθ eHeT = .
Both Step 1 and Step 2 imply at first glance that a root finding
procedure may be required. However, as already pointed out,
root finding procedures are known to be inaccurate and
unreliable for large order polynomials. Factorisation without
root finding forms also the basis of the procedure developed in
[1],[3-4],[9]. In [1],[4-5] use is made of the real cepstral
parameters, where the cepstral aliasing problem is recognised
and careful procedures are recommended to reduce its effects.
In [3] they approach the factorisation problem from the
Lagrange interpolation point of view. In the above procedures
it is assumed that the zeros of the transfer function on the unit
circle are a priori known. We make no such assumption in our
present work.
An alternative and direct polynomial construction procedure
without having to go through root estimation procedures is
possible through the root moments of a given polynomial [7-
8].

4. ROOT MOMENTS
In relation to polynomials typically given as in equ.(1) Newton
defined a set of parameters given by
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where ir  is the ith root of (1). The roots of (1) are not needed

explicitly to compute mS  in that these parameters can be

determined directly from the coefficients ih . The parameters

mS  are known as the root moments of the polynomial )(zH .

They are related to many signal processing operations,
dominant amongst which is the differential cepstrum. However
it would be limiting to think of them purely in this sense since
a wider perspective enables us to provide answers to many
digital signal processing problems that have been, hitherto,
unattainable [7].

4.1 Iterative Estimation of Root Moments

By writing the polynomial (1) as a product of factors we can
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By direct differentiation of equation (1) we have
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Hence by equating the last two expressions we obtain the
following fundamental relationships known as Newton
Identities
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and generally
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When the signal treated by this means is infinitely long, the
above equation is repeatedly used to calculate successive
values of the root moments. If the signal is of finite duration
then for nm >  02211 =++++ −−− nmnmmm ShShShS � .

The same relationship as above can be used to calculate mS

for 0<m  by inserting successively values for m  equal to
,1−n  2−n , �,3−n etc. It should be noted that mS  for

either positive or negative values of m  are evaluated
recursively from the coefficients of equation (1) alone.
The above relationships also follow from the definition of the
differential cepstrum and are essentially included in [6].
However in [6], n  is assumed to be finite and a priori known.
This is only a minor point as the iteration in equ.(4) do not
require n  to be finite and, hence, it can be applied to infinite
duration signals. It is sufficient at this juncture to observe that
both finite duration signals and infinite duration signals of
exponential entire function type interpretation can be treated in
the same way [7]. To facilitate the exposition, the parameters
in (2) are referred to as the root moments. This terminology
emphasises the deviation from the differential cepstrum.
Essentially one can interpret the set of equations (4) as a
transformation of the coefficients { }rh  to the parameter set

{ }mS  of the same cardinality. The transformations are one-to-
one and hence we can have the following existence corollaries.

Corollary 1 Given a set of coefficients { }rh  of the n th

degree polynomial in equation (1) which has roots
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{ } ,,,1  niri �=  there exists a set of parameters

{ } nSnmSm == 0  ,,,1  � , given by equ.(2).

Corollary 2 Conversely given a set of root moments { } mS

there exists a set of coefficients { } ,,,1  nrhr �=  for a

polynomial as in equ.(1) determinable recursively through
equ.(4). The proofs are self evident from the above analysis.

4.2 Non Iterative Estimation of Root Moments

The Newton Identities yield the root moments of the entire
signal, encompassing not only those roots that lie within the
unit circle but also those that are outside the unit circle.
However, it is often the case that a specific factor of a given
polynomial )(zH  is required, such as the minimum phase
factor and in this case its root moments can be determined in a
different manner.

Let a closed contour Γ  defined as θθρ j)( ez =  contain the

roots of the required factor of )(zH . Then it follows from the
Cauchy residue theorem that the root moments of this factor
are given by
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This is evident from the fact that
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and the contribution to the integration are those due to those
'ir s that lie within Γ . (It is assumed that we have no zeros on

Γ .)
In practice the contour integration will have to be effected
directly from the coefficients of )(zH  and this can be done
quite conveniently through the use of the DFT as it is shown
below.

Equation (5) becomes for θθρ j)( ez =
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Discretisation of equation (6) suitable for DFT use requires

values 1,,1,0  ,
2 −== Nkk
N
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πθ  for an N -point

transform. Therefore, we have the inverse DFT
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If the contour of integration is the unit circle 1 : =zC  then

the resulting root moments from the above, correspond to those
of the minimum phase component of )(zH . In this case we
have the special form of (8)
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For either equ.(7) or equ.(8) the computation of )( kg θ  can be

done through the use of the DFT also.

It is observed that on θθρ j)( ez =  we can write
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With N  a power of 2 we can use the Fast Fourier Transform
(FFT) algorithm.

5. THE ALGORITHM
The algorithm relies on the direct and accurate extraction of
the appropriate factors from the FIR linear phase transfer
function )(zH  needed to implement )(zT  described above.
The FIR linear phase transfer function is designed using the
Remez or any other similar existing algorithm according to the
specifications of the user. The designed filter has roots on the
unit circle. For that reason we cannot obtain the minimum
phase part by integrating around the unit circle. The approach
we take follows the steps below.

Step 1:
We integrate around a circle centered at the origin and of
radius less than unity. With a careful choice of the contour
radius, the integration gives the root moments )()( in1 mSmS =
that correspond to that part of the original FIR transfer function
which has its zeros inside the unit circle, namely the minimum
phase part.
Obviously the radius of the contour is of crucial importance.
We have to ensure that the selected circle includes all the roots
of the minimum phase part of the original polynomial.
This is examined separately below.

Step 2:
We integrate around a circle centred at the origin and of radius
greater than unity. Again the radius of the contour must be
selected carefully. A good selection in Step 1 yields a
correspondingly good selection for Step 2, that is the reciprocal
of the radius selected in Step 1. The integration produces the
parameters )()()( 0in2 mSmSmS +=  where )(0 mS  are the

root moments of that factor of the original FIR digital filter
transfer function which has its zeros on the unit circle.

Step 3:
The required transfer function has the root moments

)()(2)( 0in mSmSmS += , or )()()( 21 mSmSmS += .

Step 4:
From Step 3 and from the Newton's Identities we form the
required minimum phase FIR filter transfer function which is
the minimum phase version of the initial mixed phase transfer
function. The order of this is the same as the order of the
original polynomial and equal to )0()0( 21 SS + .

5.1 Estimation of the radii of the integration
The radii of integrations in the above algorithm must be chosen
so as to enclose the appropriate zeros of the given FIR digital
filter transfer function. Thus for )(1 mS  the radius of the

integration contour r  must be such that |)max(|1 inrr >> ,
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while for )(2 mS  the radius of the integration contour r  must

be chosen such that |)min(|1 outrr << .

For equiripple filters the required radii can be estimated as
follows.
Let us remove the linear phase factor from the frequency
response to yield only a real function. This function now we
shift vertically half way between its maximum and minimum
values.
An approximate representation of this zero pattern, is given
almost everywhere by

                           )1)(()( −−= nnnn zaazzC                      (12)
The above transfer function is equiripple, linear phase and its
zeros are located on two circles controlled by the parameter a .
We now take the magnitude of it. Since the initial transfer
function is equiripple the result of these operations will be a
real positive function of equiripple modulus almost
everywhere. The ripple variation remains unchanged, namely,
a normalised response will vary between δ+1 and δ−1
almost everywhere except in the transition band. The
amplitude characteristic is equiripple between the values
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The quantity δ  can be estimated from the initial transfer
function created by the Remez algorithm.
Hence we can estimate the radii of the circles within the zeros
of the required polynomials are expected to be located, using
the relationships
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For very small ripple width, 11 <<a  and 2a  can be

approximated to 
n

a

1

2
2






=

δ
.

5.2 Discussion for Future Work

It may be the case in a system application that the reduction in
the group delay obtained by the above algorithms is more than
the required amount. Then we can improve the non-linearity in
the phase response as follows.
• The root moments corresponding to the stop band

transmission zeros remain the same as above.
• From the rest of the zeros we can select an appropriate

number in conjugate form, for real transfer functions,
in an arbitrary fashion.

Extraction of factors of polynomials that have zeros in certain
non-circular regions can also be put into effect by integrating
around these regions. Specifically with respect to the filter
design problem we can determine the factor corresponding to
the zeros on the unit circle by integrating along a segment of
the unit circle.

Further work is necessary to explore the options open here.

6. EXPERIMENTAL RESULTS
The following example is a low pass equiripple FIR digital
filter of order 80, with linear phase, designed using the Remez
algorithm. The pass band occupies the frequency samples from
0 to 204, the transition band from 205 to 225 and the stop band
from 226 to 511 samples (with 512 being the Nyquist
frequency).
Figures 1 and 2 show the amplitude response and the location
of the roots within the −z plane, of the mixed (and linear)
phase FIR system transfer function, designed using the Remez
algorithm.
Figures 3 and 4 show the amplitude response and the location
of the roots within the −z plane, of the minimum phase
version of the same system using the proposed designed
algorithm.
Figure 5 shows the phase response for both systems.
Figure 6 shows the group delay for both systems.

Figure 1
In the above figure, the dotted circle corresponds to the unit
circle and the two solid circles to the ones that will be used for
the contour integrations in the proposed algorithm.

Figure 2: Amplitude response of the original linear phase FIR
filter transfer function.
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Figure 3

The roots outside the unit circle have inverted inside, exactly
on their reciprocal roots. The number two on the figure
indicates the double roots.

Figure 4

The amplitude response of the reconstructed minimum phase
version of the transfer function is almost identical as the one
obtained using the Remez algorithm.

The two following graphs show the phase response of the
original and the reconstructed filter respectively. The range of
frequency samples of interest is the pass band which goes from
0 to 204 samples.

The original filter has a linear phase response as designed by
the Remez algorithm. The minimum phase version of it has a
non linear phase response as expected.

At the last figure the group delay of the original and the
reconstructed filters are shown. Again the range of frequency
samples of interest is the pass band. There is a significant
decrease of the group delay within the range of frequencies of
interest, namely, the passband.

Figure 6
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