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ABSTRACT

This work1 demonstrates that the distance measuring
the likelihood of the graphs of two functions, usually
referred as Hausdor� distance between functions and
widely used in function approximation tasks and sig-
nal processing, can be calculated e�ciently using grey
- scale morphological operations even in the case of
noncontinuous (discrete as well as nondiscrete) func-
tions. Also we have presented a generalization of the
Bouligand de�nition of fractal dimension working also
in the case of noncontinuous objects. Our results are
based on the usage of the notion of a closed graph a
function, as de�ned by Sendov.

1. INTRODUCTION

Image and signal measurements are of particular in-
terest for featuring regions for both segmentation and
classi�cation purposes. This paper works with signal
and image features which can be evaluated by morpho-
logical operations. One of the most useful features in
signal and image processing is the fractal dimension -
especially in the case of medical signal processing or
processing of texture images in aerial photography, X-
ray medical tomography and quality inspection of sur-
face maintenance [7] .

As mentioned in [9] , in many approximation problems
it is useful to work with the so called Hausdor� distance
between functions. We show that the distance measur-
ing the likelihood of the graphs of two functions, usu-
ally referred as Hausdor� distance between functions
and widely used in function approximation tasks and
signal processing, can be calculated e�ciently using
grey-scale morphological operations. The main pro�t
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is that we approximate the original function { signal or
image { by a simpler one in the class of piecewise poly-
gons, Bezier functions, cubic splines etc., which graph
shape is close to the original graph shape. Also, our
results are shown to be useful in signal sampling via
morphological strategy [4] . To obtain a complete de-
scription of a signal or an image it must be analyzed
over a complete range of spatial scales, which is ex-
pressed by the term multiresolution representation. A
multiresolution representation is a sequence of images
in which each image is a �ltered and subsampled copy
of its predecessor. A natural criterium for stopping the
sampling procedure is when the Hausdor� distance be-
tween the real image and its sampled version becomes
small enough, or alternatively, when the Hausdor� dis-
tance between a sampled version of the image and its
predecessor becomes small enough. Following Sendov
[9], in our work we de�ne the closed graph of a signal or
an image as an interval- valued function represented by
the upper and the lower Baire function of the original
signal. Further on we shall refer to the objects under
consideration as signals, although our results are ap-
plicable to spaces with dimension higher than one, for
instance to two and three dimensional visual scenes.

Many natural texture images present structures at all
scales and show high degree of roughness. A key pa-
rameter for such images, or signals, is their fractal di-
mension { a real positive number (usually noninteger)
which is widely used as texture descriptor in image pro-
cessing [7] . We have presented a generalization of the
Bouligand de�nition of fractal dimension working also
in the case for noncontinuous discrete and nondiscrete
signals and images. This de�nition is based also on the
usage of the notion of a closed graph a function.



2. MORPHOLOGICAL OPERATIONS {

PRELIMINARIES

Let us assume that our objects lie in a linear space M .
Considering two subsets of M , namely A and B the
following operations are used:

� Minkowski addition of A and B, A�B is de�ned
as A �B =

S
b2B A+ b = f a + b j a 2 A ; b 2

Bg; and Minkowski di�erence of A by B, A	B

is de�ned as A	B =
T
b2B A�b = fx 2M jB+

x � Ag: For the properties of these operations see
[3] .

� Opening of A by B is de�ned as A � B = (A 	
B) � B; while closing of A by Bis de�ned as
A �B = (A �B) 	B:

Let us now consider asM the m-dimensional Euclidean
space Rm. Here and henceforth Bm

r (x) denotes the
closed ball in the m-dimensional space (disk in two di-
mensional space) with centre x and radius r. Some-
times we miss the upper index when there is no con-
fusion with dimensions. We shall omit the centre of
the ball when the ball is centered at the origin. Then
if X is a compact set from Rm, then we shall call the
compact set X �Br parallel body of X with thickness
r: If X is a curve in the plane, then the parallel body
will be referred to as a parallel ribbon.

If P and Q are non-empty compact sets in Rn. Then
the Hausdor� distance between P and Q [10] is de�ned
as

dist (P;Q) = maxfh1(P;Q) ; h2(P;Q)g;

where h1(P;Q) = maxfd(x; P ) jx 2 Qg; and h2(P;Q) =
maxfd(x;Q) jx 2 Pg: By d(x;A) we denote the Eu-
clidean distance between the point x and the set A,
namely d(x;A) = inffjx � aj j a 2 Ag; and jzj is the
Euclidean norm of the vector z 2 Rm.

It is well known (see for instance [10] or [1]) that

dist (P;Q) = inff" jQ � P � B"(0) ; P � Q� B"(0)g:
(1)

Let consider the grey - scale morphological operations
in Fun(M ) { the family of all functions mapping the
linear space M to the compacti�ed real line �R = R [
f1;�1g: The basic morphological operations { ero-
sions and dilations { are de�ned by

(�g(f))(x) = sup
x2M

(f(x � h) + g(h)); (2)

("g(f))(x) = inf
x2M

(f(x + h)� g(h)); (3)

supposing that s + t = �1 if s = �1 or t = �1,
and s � t = 1 if s = 1 or t = �1. Then every
translational - invariant dilation is given by (2), and
every translational - invariant erosion { by (3). Further
we shall denote �g(f) by f � g, and "g(f) by f 	 g.
These operations are named grey - scale morphological
operations [10] and are widely used in the analysis of
grey - scale images.

3. COMPUTING THE HAUSDORFF

DISTANCE BETWEEN FUNCTIONS BY

GREY- SCALE MORPHOLOGICAL

OPERATIONS

As mentioned in [9], in many approximation problems
it is useful to work with the so called Hausdor� distance
between functions. The main pro�t is that we approx-
imate the original function by a simpler one (piecewise
polygons, Bezier functions, splines etc.) which graph
shape is close to the original graph shape. We shall
consider only functions with bounded domain. But be-
fore setting the main result we need some additional
notions and notations.

In [3] it is shown that there exists a simple relation
between binary and grey - scale operations. So, let
de�ne the set named umbra U � M � �R with the
property: the point (x; t) 2 U if and only if for every
s < t it follows that (x; s) 2 U: Given a function f(x)
from Fun(M ), we can de�ne an umbra

�(f) = f(x; t) 2M � �Rj t � f(x)g:

Conversely, given an umbra U , we can construct the
function

fU (x) = supft 2 Rj(x; t) 2 Ug;

such that �(fU ) is namely the umbra set U . We can
de�ne also an upper closure of the set A � M � �R
as the minimal umbra set containing A, which will be
denoted by �(A), i.e. �(A) is the intersection of all
umbrae containing A. It is evident that the �() oper-
ation is a closing. In [3] also the class of pre-umbra
sets is considered: The set H is a pre-umbra if for ev-
ery point (x; t) 2 H and for every s < t the inclusion
(x; s) 2 H holds. It is clear that the Minkowski sum
of two umbrae is a pre-umbra. Also, if H is a pre-
umbra, then cl (�(H)) = cl (H). Here and henceforth,
we denote by cl(X) the topological closure of the set
X: The last equality follows from the fact that H con-
sists of closed and non-closed rays and therefore �(H)
consists of closed rays. Then the equality follows imme-
diately from the fact that the sequence of real numbers



fxng converges just when
�
xn �

1
n

	
converges and vice

versa and they have a common limit. Also, if A is a
topological space and A is closed in M � �R, then �(A)
is closed in M � �R as well.

In [3] the following theorem is proved:

Theorem 1. �(f � g) = �(�(f) � �(g)); �(f 	 g) =
�(f) 	 �(g):

Let now M = Rn and let us consider the closed graph
of the function f : Rn 7! �R denoted by �(f) (see [9]) {
it is de�ned as an interval valued function (�(f))(x) =
[(I(f))(x); (S(f))(x)]; where (I(f))(x) and (S(f))(x)
are the lower and upper Baire functions of f respec-
tively [9]:

(I(f))(x) = lim
�!+0

infff(t)jt 2 B�(x) \ dom(f)g

(S(f))(x) = lim
�!+0

supff(t)jt 2 B�(x) \ dom(f)g:

Or equivalently,

(I(f))(x) = lim inf
t!x

f(t)

(S(f))(x) = lim sup
t!x

f(t):

Here by dom(f) we denote the domain of f {

dom(f) = fx j1> f(x) > �1g:

The closed graph can be considered also as a closed set
in Rn � �R.

Lemma 2. If f : Rn 7! �R, then cl (�(f)) = �(�(f)).

Proof. Let y 2 �(�(f)). Without lack of generality we
may assume that y = (S(f))(x) for any x. We shall
show that (x; y) 2 cl (�(f)).

Consider a sequence of closed ballsB�i (x), limi!1 �i =
0. Let us de�ne the numbers Si = supff(t)jt 2 B�i(x)\
dom(f)g. Then there exist points xi 2 B�i (x)\dom(f)
such that Si � f(xi) � Si �

1
n
. Therefore limi!1 xi =

x and limi!1 f(xi) = (S(f))(x) = y. Since the points
(xi; f(xi)) are from �(f), then (x; y) 2 cl (�(f)) and
�(�(f)) � cl (�(f)).

Conversely, let us now choose a point (x; y) 2 �(f) and
suppose for simplicity that y = f(x). Then (I(f))(x) �
f(x) � (S(f))(x) which means that �(f) � �(�(f)).
From the upper semicontinuity of the upper Baire func-
tion (see [9]) it follows that �(�(f)) is closed. There-
fore cl (�(�(f))) � �(�(f)), which proves the lemma.

Corollary 3. �(S(f)) = cl (�(f)) = �(�(f)).

In [9] Sendov de�nes the Hausdor� distance between
the functions f and g as d(f; d) = dist (�(f);�(g));
where dist is the ordinary Hausdor� distance between
sets.

In this work we demonstrate that the distance d can
be easily expressed by grey - scale morphological op-
erations, which enables its simpler computation using
only the values of the upper Baire function.

Sendov's de�nition of Hausdor� distance between func-
tions is more general and more precise than that stud-
ied in [1] and correctly treats the function discontinu-
ities. For discrete signals both de�nitions lead to the
same result.

Let x 2 Rn. For every " > 0 we de�ne the function
b"(x) = maxfyj(x; y) 2 Bn+1

" (x)g with domain the ball
Bn
" (0).

Theorem 4. d(f; g) = supf"jS(f) � S(g)�b" ; S(g) �
S(f) � b"g:

Proof. From Theorem 1 it follows that �(S(f))�b" ) =
�(�(S(f))��(b" )) From simple geometrical reasons it
follows also that �(S(f))��(b") = �(S(f))�Bn+1

" (0).
Since �(S(f)) is closed (see Lemma 2), and Bn+1

" (0)
is compact, then their Minkowski sum is topologically
closed. Also, the sum of two umbrae is a pre-umbra,
but when a set is a topologically closed pre-umbra, it
is an umbra. Therefore �(S(f) � b") = �(S(f)) �
B"(0): For the two functions u and v we have u � v

just when �(u) � �(v). Then from the Corollary of
Lemma 2, �(S(f)) = �(�(f)). Therefore the in-
equality S(g) � S(f) � b" is equivalent to the inclu-
sion �(�(g)) � �(�(f))�B"(0) which is satis�ed evi-
dently when �(g) � �(�(f)) � B"(0). Then the proof
of our theorem follows immediately from the de�nition
of Hausdor� distance between sets.

4. ESTIMATION OF THE FRACTAL

DIMENSION OF SIGNALS

The dimension of a real object refers to properties known
as length, area and volume. An object having length
is said to be one - dimensional; if it has area but its
volume is zero it is of two dimensions; and it has only
a volume - it is of three dimensions. Or speaking more
precisely, a geometrical object is n-dimensional, if n
is the least least real number parameter used to de-
termine continuously the points of the con�guration of
the object [12]. De�nitions of dimensions can be given



also to compact objects having in�nite area, area or
volume. These sets are known to be fractals. Or in
other words, fractals are sets whose geometry follows
the Hausdor� concept of dimension [2].

Usually, a set is called to be a fractal, if its Hausdor� -
Besicovitch dimension is strictly greater than its topo-
logical dimension [2, 12]. However, the Hausdor� -
Besicovitch dimension is usually di�cult to estimate
in practice. Another dimension characteristics, much
more easier to compute, is the so called Minkowski -
Bouligand dimension.

First Minkowski suggested to measure the length of
two-dimensional curve by measuring the area S� of its
parallel ribbon by a disk B� of radius �, dividing this
area by the thickness 2� and calculating the limit of
this quotient when � tends to zero. For curves with
�nite length it is easy to demonstrate that the limit

lim�!0

h
logS�
log �

i
is equal to one.

Therefore for arbitrary compact set X in Rn Bouligand
de�ned the following limit:

D(X) = lim
�!0

�
DT (X) �

log �n+1(X � Bn+1
� )

log �

�
;

(4)
where DT (X) means the topological dimension of X,
and �k means the k-dimensional volume (Lebesgue mea-
sure).

D is known now as Minkowski - Bouligand dimension
of the set X, and for fractal sets (i.e. sets with self sim-
ilarity or statistical self-similarity) DT (X) < D(X) �
DT (X) + 1, while for nonfractal sets D = DT :

Let us now consider the interesting from signal pro-
cessing point of view case, when X is the graph of a
bounded function f : P 7! R, and P is compact con-
nected subset of Rn, and its boundary @P is measur-
able, i.e. �n�1(@P ) < 1: Then from the sigma - ad-
ditivity of the Lebesgue measure, it follows easily that
in (4) we may substitute the volume X �Bn+1

� by the
volume of the truncated parallel body of X, de�ned as
(X �Bn+1

� )\ (P � (�1;1)). If f is continuous, then
the truncated parallel body of its graph is a compact
set in Rn+1.

In Theorem 1 in [5] it is proved that if f : P 7! R
is a continuous function de�ned on such a set P as
described above, and if b" is the function de�ned in
the previous section, then the n + 1-dimensional vol-
ume of the truncated parallel body of the graph of f
with thickness " can be calculated through Lebesgue

integration as
R
P
(f � b" � f 	 b"): The proof is made

for one - dimensional signals, but it can be repeated
without any problems and the result holds true for any
Euclidean space Rn { see for instance [12] for the two
- dimensional case.

Let consider our image, or signal, as a function f and
let for " > 0 de�ne the function f" = S(f)�b"�I(f)	
b". Then denoting for simplicity P = dom(f) we can
de�ne by Lebesgue integration the following volume -
like quantity V"(f) =

R
P
f" : Then, for both continuous

and noncontinuous signals and images we de�ne the

number D(f) = lim"!0

�
DT �

log V"(f)
log "

�
; where DT

means the topological dimension of the closed graph of
the our image f . For instance, DT equals one in the
case of signals, and two in the case of visual scenes.
This is a generalization of the Bouligand de�nition of
fractal dimension working also in the case for noncon-
tinuous objects. If our signal f is statistically self-
similar there is no need to compute the limit. Following
directly the proof of Theorem 1 in [5] it follows that
D(f) is namely the Minkowski - Bouligand dimension
of the closed graph �(f) of the function f when the do-
main of f is compact, connected set with measurable
border. The new proof slightly di�ers from the proof of
Maragos and Sun, and exploits the upper semicontinu-
ity of S(f) and the lower semicontinuity of I(f) instead
of the continuity of f in the original result of Maragos
and Sun in [5].

5. CONCLUSION AND FUTURE RESEARCH

We have shown that the notion of a closed graph of a
continuous -time signal using its upper and lower Baire
function is useful to calculate features like Hausdor�
distance and fractal dimension.

Further we shall attempt to derive convergence crite-
ria between the fractal dimension of a signal and the
discrete analogs of fractal dimension ( as used for in-
stance in [7] ) of its morphological samples calculated
discretely.
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