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ABSTRACT

This paper deals with stochastic resonance. This nonlin-
ear physical phenomenon generally occurs in bistable sys-
tems excited by a random noise plus a sine. Such sys-
tems force cooperation between the input noise and the in-
put sine: Provided a fine tuning between the power noise
and the dynamics, the system reacts periodically. The in-
teresting fact is that the local output signal-to-noise ratio
presents a maximum when plotted against the input power
noise. In this paper we recall the results for the discrete-time
one-dimensional nonlinear AR(1) systems. We then extend
the study to a particular 2-dimensional nonlinear system.

1. INTRODUCTION

Stochastic Resonance (SR) is a physical phenomenon oc-
curing generally in bistable dynamical systems excited by
random noise and a sine. To fix the idea, assume that a par-
ticle is moving in a bistable potential. Under the assumption
of strong friction, the particle will fall and stay in one well
of the potential. If the particle is then excited by a random
noise, the particle will have a non-zero probability to hop
from one well to the other. Now, if we add a sinusoid in
the input, the potential will be modulated, and provided a
fine tune of the parameters (sine and noise amplitude), a
cooperative effect between the sinusoid and the noise takes
place: The particle will jump from one well to the other at
the frequency of the sinusoid. The interesting fact is that
the output Signal-to-Noise Ratio (SNR) at the frequency of
the sinusoid presents a maximum when plotted against the
variance of the input noise (see Figures 1 and 2). This fact
has led several researchers to examine the ability of SR to
detect [1, 12] or amplify small amplitude periodical signal
[8].

The theory of SR in continuous time systems is diffi-
cult. However, under some assumptions, several approx-
imate theories exist that explain that phenomenon [9]. We
have examined in [13] SR in a discrete time context, through

the nonlinear AR(1) model:�
xn = �(xn�1) + bn + "n
yn = c sign(xn)

(1)

wherebn is an independent identically distributed (iid) noise,
"n is a weak sine of amplitude" and of frequency�0 and
where�(x) is taken bistable, where�c are the two stable
equilibrium points. In this paper we will recall the essen-
tial theoretical results. Then we will present some further
results on the simple case� = c sign. Finally we will ex-
tend the results on the 2-dimensional system of the form
(1), wherexn will be a 2-dimensional vector and where for
x = [x0 x1]

t, � will be defined as

�(x) = c[sign(x0)h(x1) sign(x1)h(x0)]
t

whereh(x) = 1 if x 2 [��c �c] and 0 elsewhere,� > 1.
The two components ofbn will be assumed independent and
iid, and the two components of"n will be two weak sinu-
soids of the same frequency�0, of amplitude respectively
"0 and"1, and of phase respectively'0 and'1. Consider-
ing these sines as representative of a 2-dimensional motion,
"n will then represent an elliptic motion.

2. BRIEF OVERVIEW OF THE METHOD FOR THE
ONE-DIMENSIONAL CASE.

In the one-dimensional system, the iid property ofbn im-
plies thatxn and thenyn are Markovian. Thus the Chapmann-
Kolmogorov equation can be written to determine the recur-
sion on the probability density function (pdf) ofxn, fx(x; n) =Z
R

fb(x��(y)�"n) fx(y; n�1) dy, wherefb andfx(:; n)

are the pdf ofbn andxn. We then make a Taylor expansion
(order 1) offb(x � �(y) � "n) in x � �(y) and we show
in [13] that the pdf ofxn is asymptotically composed of
the pdf obtained in the absence of the sine (" = 0) plus a
modulation term. Then the probability vector ofyn and the
transition matrix fromyn�1 to yn can easily be evaluated.
Due to the Markov property the transition matrix fromyn to



yn+k is simply the product of the one-step transition matri-
ces. Then using the transition matrix fromyn to yn+k and
the probability vector ofyn, the correlation function of sig-
nal yn, �(n; k) = E[yn+kyn], can be calculated. It leads
to the zero-cyclic correlation function�(k) = h�(n; k)in
(whereh:in represent an average inn): �(k) � c2�k +
"2j�(�0)j

2

2 cos(2�k�0). Parameter� and the susceptibility
�(�) depends on the system and on the input noise (see
[13]). Hence the local output SNR at the frequency of the
sine�0, defined as the ratio between the power of the output
sine and the power spectral density function of the output

noise at�0, is given bySNR = "2j�(�0)j
2(1+�2�2� cos(2��0))
4c2(1��2) .

For the simple system� = c sign, the parameters are
simply � = Fb(c) � Fb(�c) and�(�) = 2cfb(c)

1�� exp(�2{��)

(fb andFb are respectively the probability and the cumula-
tive density function ofbn). Then we can evaluate the local
output SNR at frequency�0. This SNR is plotted against
the input noise power�2 in figure 1 when the input noise
is Gaussian and in figure 2 when the input noise is uniform.
This figures exhibit the SR phenomenon.

3. EXTENSION TO A PARTICULAR
2-DIMENSIONAL CASE

Multidimensional systems showing SR have already been
studied [3, 11], but the output of the studied systems are
one-dimensional.

We have not enough place here to present the devel-
opment of the calculus in details, but in the generald-di-
mensional case, the method is the same than that use for
the one-dimensional case [13]. We just give the fundamen-
tal elements of the calculus for the particular 2-dimensional
case (1) wherexn is a 2-dimensional vector and where for
x = [x0 x1]

t, � is defined as

�(x) = c[sign(x0)h(x1) sign(x1)h(x0)]t (2)

whereh(x) = 1 if x 2 [��c �c] and 0 elsewhere,� > 1.
The two components ofbn are assumed independent and
iid, and the two components of"n are two weak sinusoids
of the same frequency�0, of amplitude respectively"0 and
"1, and of phase respectively'0 and'1. The pdf ofbn is
assumed centro-symmetric.

In this 2-dimensional case, the pdf ofxn is recursively
written using that ofxn�1 (Chapmann-Kolmogorovor mar-
ginal density)

fx(x; n) =

Z
R

2

fb(x��(y)� "n) fx(y; n) dy (3)

As done in the one-dimensional case in [13],fb(x �
�(y)�"n) is expanded inx��(y), i.e. fb(x��(y)�"n) �
fb(x��(y))� "tnf

0
b(x��(y)) (wheref 0

b(u) is the vector
containing the partial derivates offb).

As in the one-dimensional case [13], it can then be shown
thatfx(:; n) is asymptotically of the form

fx(:; n) = fwm + "tnf" + �tnf� (4)

wherefwm is the pdf ofxn when there are no sine in the
input and where�n is the quadrature of"n. The functions
f"(x) andf�(x) are 2-dimensional and"tnf"+�tnf� is then
the contribution of the sine to the pdf.fwm is given by the
the eigenequation

fwm(x) =

Z
R

2

fb(x��(y)) fwm(y) dy (5)

and the other terms are given byf" + if� = fmod,

fmod(x) = �

Z
R

2

f 0
b(x��(y)) fwm(y) dy

+ e�2i�n�0

Z
R

2

fb(x��(y)) fmod(y) dy
(6)

Using the pdf ofxn the probability vector ofyn,

py(n) =

2
666666664

Pr [ ytn = [�c � c] ]

Pr [ ytn = [+c � c] ]

Pr [ ytn = [�c + c] ]

Pr [ ytn = [+c + c] ]

3
777777775

can be determined. This vector is here of the formpy(n) =
�y+my(n) where�y is the probability vector in the absence
of the modulation, and wheremy(n) represent the (small)
contribution of the modulation.

As done in [13] in the one-dimensional case, the transi-
tion matrixP (n + 1; n) from yn to yn+1 can be evaluated.
This matrix is of the formPy(n+1; n) = Ry+My(n+1; n)
whereR is the transition matrix in the absence of the mod-
ulation, and whereM(n + 1; n) represent the (weak) con-
tribution of the modulation.

bn is iid, thenyn is Markovian: The transition matrix
Py(n + k; n) from yn to yn+k is simply the product of the
one step transition matrices.

Finally, using the probability vectorpy(n) and the tran-
sition matrixPy(n + k; n), we can easily determined the
zero-cyclic correlation function of the output, defined as
�y(k) = hE[yn+k y

t
n]in. This correlation function is of

the form

�(k) � c2
�
�0 0
0 �1

�k

+

"
"2
0
j�0(�0)j

2

2 0

0
"2
1
j�1(�0)j

2

2

#
cos(2�k�0)



+
"0"1 j�0(�0)�1(�0)j

2
��

0 cos(2�k�0 + '(�0))
cos(2�k�0 � '(�0)) 0

�

where parameters�0 and�1, susceptibilities�0(�) and�1(�)
depend of the input noisebn (both the two components,
'(�0) = '0 � '1 + Arg(�0(�0))� Arg(�1(�0))).

Two local SNR (SNR0 andSNR1) at frequency�0
can be defined as for the one-dimensional case, using the
diagonal terms.

In the particular case studied here,� is constant in nine
domains ofR2. Then the eigenequation givingfwm reduces
to a matricial eigenequation as for the SETAR case (see
[13]). The equation givingfmod also reduces to a matricial
equation.

We use then these matricial equations to reduce a little
the complexity of the calculus. The complete calculus are
quit long and the formula giving parameters�0, �1, �0 and
�1 are too complex. There is no interest to presented them
here.

The numerical study has been done (using exactly the
same scheme than that used to study the SETAR models in
[13]) for varying variances of the first and second compo-
nent ofbn, �20 and�21 . Figures 3 and 6 then depictsj�0(�0)j
as a function of�0 and�1 in the Gaussian and Uniform
cases. This shows the amplification of the first component
of the input sine, and exhibit the SR phenomenon, as well in
�0 as in�1. This result is confirmed in figures 4, 5, 7 and 8.
Hence such a system can create 2-dimensional SR. Notice
that the form ofj�1(�0)j here is simply the symmetric of
j�0(�0)j against�0 = �1. The SNR are not depicted here,
but show the same properties as the susceptibilities.

4. CONCLUSION.

We have recalled in this paper that SR, that is initially a
physical phenomenon, can possibly be used in signal pro-
cessing to amplify small noisy sines. We than suggest that
this kind of discrete-time SR can be extended tod-dimensio-
nal SR, studying a particular 2-dimensional AR(1) system.
We then show that such an extension gives some interest-
ing results. Indeed, it can particularly shown that the first
component of the elliptic input can be amplified by the sec-
ond component of the input noise! We currently, study the
extension to generald-dimensional AR(1) systems.
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Figure 1:1-d case: Theoretical and experimental SNR ver-
sus�2. bn is Gaussian,c = 10, � = :02 and" = 1.
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Figure 2:1-d case: Theoretical and experimental SNR ver-
sus�2. bn is uniform,c = 10, � = :04 and" = :25.
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Figure 3:2-d case:j�0(�0)j versus�0 and�1. bn is Gaus-
sian,c = 10, � = 1:75 and� = :02.
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Figure 4: 2-d case:j�0(�0)j versus�0 for some fixed�1.
bn is Gaussian,c = 10, � = 1:75 and� = :02.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

σ
1

σ
0
 = 2.5 

σ
0
 = 7   

σ
0
 = 12.5

Figure 5: 2-d case:j�0(�0)j versus�1 for some fixed�0.
bn is Gaussian,c = 10, � = 1:75 and� = :02.
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Figure 6:2-d case:j�0(�0)j versus�0 and�1. bn is Uni-
form,c = 10, � = 1:75 and� = :02.
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Figure 7: 2-d case:j�0(�0)j versus�0 for some fixed�1.
bn is Uniform,c = 10, � = 1:75 and� = :02.
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Figure 8: 2-d case:j�0(�0)j versus�1 for some fixed�0.
bn is Uniform,c = 10, � = 1:75 and� = :02.
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