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ABSTRACT the nonlinear AR(1) model:
This paper deals with stochastic resonance. This nonlin- { Tn = ‘I’(_ﬂfnq) +bnten L
ear physical phenomenon generally occurs in bistable sys- yn = csign(z,)

tems excited by a random noise plus a sine. Such sys- . . . . - . .
tems force cooperation between the input noise and the in-Wh_ereb” IS an |r_1dependent_|dent|callydlstnbuted (iid) noise,
put sine: Provided a fine tuning between the power noiseE”hIS a(I)weaI_< S'nlf ofba_lmpgltudeﬁnd of freqﬁencyﬁ\g ank;jl
and the dynamics, the system reacts periodically. The in-"V"€"€ () is taken bistable, wheréc are the two stable

teresting fact is that the local output signal-to-noise ratio gqlunr:brlum_ pc;mts. Iln tr_‘lli paper W,EIEI will recall the efssehn—
presents a maximum when plotted against the input powertIa theoretica resu s. en we wi p_resent SOme urther
results on the simple cage = c¢sign. Finally we will ex-

noise. In this paper we recall the results for the discrete-time d th | he 2-di ional fthe f
one-dimensional nonlinear AR(1) systems. We then extendt€nd the results on the 2-dimensional system of the form

the study to a particular 2-dimensional nonlinear system. (1) wherer? will be a 2-dimensional vector and where for
x = [zo z1]*, ® will be defined as

®(x) = c[sign(zo)h(w1) sign(zy)h(zo)]’

whereh(z) = 1if z € [—ac ac] and 0 elsewherey > 1.
Stochastic Resonance (SR) is a physical phenomenon ocThe two components @f, will be assumed independentand
curing generally in bistable dynamical systems excited by jid, and the two components ef, will be two weak sinu-
random noise and a sine. To fix the idea, assume that a parsoids of the same frequengdy, of amplitude respectively
ticle is moving in a bistable potential. Under the assumption ¢, ande;, and of phase respectivefy, andy;. Consider-
of strong friction, the particle will fall and stay in one well  ing these sines as representative of a 2-dimensional motion,
of the potential. If the particle is then excited by a random ¢, will then represent an elliptic motion.
noise, the particle will have a non-zero probability to hop
from one well to the other. Now, if we add a sinusoid in
the input, the potential will be modulated, and provided a
fine tune of the parameters (sine and noise amplitude), a
cooperative effect between the sinusoid and the noise takegy, the one-dimensional system, the iid propertybgfim-

place: The particle will jump from one well to the other at jies thatr,, and theny,, are Markovian. Thus the Chapmann-
the frequency of the sinusoid. The interesting fact is that o|mogorov equation can be written to determine the recur-

the output Signal-to-Noise Ratio (SNR) at the frequency of gjon on the probability density function (pdf) ef,, folz,n) =
the sinusoid presents a maximum when plotted against the

variance of the input noise (see Figures 1 and 2). This fact [ fo(z = ®(y) —€n) fa(y,n—1) dy, wheref, andf, (., n)
has led several researchers to examine the ability of SR togre the pdf ob,, andz,,. We then make a Taylor expansion
detect [1, 12] or amplify small amplitude periodical signal (order 1) offy(z — ®(y) — €,) in z — ®(y) and we show
(8]. in [13] that the pdf ofz,, is asymptotically composed of
The theory of SR in continuous time systems is diffi- the pdf obtained in the absence of the sine<( 0) plus a
cult. However, under some assumptions, several approx-smnodulation term. Then the probability vectorgf and the
imate theories exist that explain that phenomenon [9]. We transition matrix fromy,,_; to y,, can easily be evaluated.
have examined in [13] SR in a discrete time context, through Due to the Markov property the transition matrix frgmto

1. INTRODUCTION

2. BRIEF OVERVIEW OF THE METHOD FOR THE
ONE-DIMENSIONAL CASE.



Yn+k 1S Simply the product of the one-step transition matri-
ces. Then using the transition matrix fram to y,,+ and
the probability vector of;,,, the correlation function of sig-
nal y,, I'(n, k) = Elyn+ryn], can be calculated. It leads
to the zero-cyclic correlation functiof(k) = (T'(n, k))n
(where(.),, represent an average in): T'(k) ~ c?g* +
M cos(2mk)Ng). Parametep and the susceptibility
x(\) depends on the system and on the input noise (se
[13]). Hence the local output SNR at the frequency of the
sine)\, defined as the ratio between the power of the output
sine and the power spectral density function of the output

noise at\o, is given bySN R = 52lX(AO)‘2(41;?12:55)““2“0))
For the simple systen® = csign, the parameters are
simply 8 = Fy(c) — Fy(—c) andx(\) = 5l —;
(f» and F}, are respectively the probability and the cumula-
tive density function ob,,). Then we can evaluate the local
output SNR at frequencyy. This SNR is plotted against
the input noise powes? in figure 1 when the input noise
is Gaussian and in figure 2 when the input noise is uniform.

This figures exhibit the SR phenomenon.

3. EXTENSION TO A PARTICULAR
2-DIMENSIONAL CASE

Multidimensional systems showing SR have already been
studied [3, 11], but the output of the studied systems are
one-dimensional.

We have not enough place here to present the devel-

opment of the calculus in details, but in the genekali-

As inthe one-dimensional case [13], it can then be shown
that £, (.,n) is asymptotically of the form

4

where fom is the pdf ofz,, when there are no sine in the
input and whereu,, is the quadrature of,,. The functions

fz(,n) = fwm +52fs + ,U/flfu

. (x) andf, (z) are 2-dimensional and, f. + p f,, is then
I nd p

the contribution of the sine to the pdfy., is given by the
the eigenequation

Fum(z) = /}R h@—0W) fem)dy  (5)
and the other terms are given fiy+ if, = fmod.
fmoa(z) = - fl(x_q)(y)) fwm(y) dy

i oo ©®)

42 [ fife = $(0) fooaly) oy
Using the pdf ofr,, the probability vector of,,,
=[c —d]

Prly, = [+c —d]

Prly

t
n

py(n) = .

Pr[yl, =[-c + ]

Prlyl, = [+c +]] |

mensional case, the method is the same than that use fofan be determined. This vector is here of the forytn) =

the one-dimensional case [13]. We just give the fundamen-fs = (n) whered, is the probability vector in the absence
tal elements of the calculus for the particular 2-dimensional ©f the modulation, and whene,, (n) represent the (small)

case (1) where, is a 2-dimensional vector and where for contribution of the modulation. _ _
z = [zo z1]', @ is defined as As done in [13] in the one-dimensional case, the transi-

tion matrix P(n + 1,n) fromy,, to y,,+1 can be evaluated.
®(z) = c[sign(zo)h(x;) sign(z;)h(xo)]* (2) This matrix is of the formP, (n+1,n) = Ry+My(n+1,n)
whereh(z) = 1if 2 € [—ac ac] and 0 elsewherey > 1.

whereR is the transition matrix in the absence of the mod-
ulation, and wheré/ (n + 1,n) represent the (weak) con-
The two components df,, are assumed independent and tripution of the modulation.
lid, and the two components ef, are two weak sinusoids b, is iid, theny, is Markovian: The transition matrix
of the same frequenclyy,, of amplitude respectively, and P,(n + k,n) from y,, to y,., is simply the product of the
e1, and of phase respectively, andy,. The pdf ofb, is  gne step transition matrices.
assumed centro-symmetric.
In this 2-dimensional case, the pdf f is recursively

Finally, using the probability vectagr, (n) and the tran-
_ ) sition matrix P,(n + k,n), we can easily determined the
written using that of:,, _; (Chapmann-Kolmogorov or mar-
ginal density)

zero-cyclic correlation function of the output, defined as
Ly(k) = (ElyntryL])n. This correlation function is of

the form
folem) = [, fole = 20) -2 Lwmdy @) )
R
rk) ~ ¢ { o 0 }
As done in the one-dimensional case in [18](z — 0 B

®(y)—e,) isexpandedim—&(y),i.e. fo(x—P(y)—cn) & 22 Ixo(do)?

fo(z — ®(y)) — et fi(x — ®(y)) (Wheref;(u) is the vector + S ) 0 2 | cos(2rkNo)
containing the partial derivates ¢f). 0 M




L EocL |X0(;0)X1 Qo)|
0 cos(2mkNo + p(Ao))
cos(2mkNo — p(Ao)) 0

where parametefs andg, , susceptibilitiego (A) andy (A)
depend of the input noisk, (both the two components,
¢(Ao) = @0 — 1+ Arg(xo(Ao)) — Arg(x1(Xo)))-

Two local SNR SN Ry and SN R;) at frequency)
can be defined as for the one-dimensional case, using the
diagonal terms.

0] Sb 160 léO 260
In the particular case studied hedejs constant in nine o
domains ofR?. Then the eigenequation givinfg., reduces
to a matricial eigenequation as for the SETAR case (seeFigure 1:1-d case: Theoretical and experimental SNR ver-
[13]). The equation giving,.q also reduces to a matricial ~ susc?. b, is Gaussiang = 10, A = .02 ande = 1.
equation.

We use then these matricial equations to reduce a little
the complexity of the calculus. The complete calculus are
quit long and the formula giving parametets 31, xo and
x1 are too complex. There is no interest to presented them
here.

2.5¢

The numerical study has been done (using exactly the 15f
same scheme than that used to study the SETAR models in
[13]) for varying variances of the first and second compo- 1r
nent ofb,,, o2 ando?. Figures 3 and 6 then depidtg (Ao)|
as a function ofry ando; in the Gaussian and Uniform 051
cases. This shows the amplification of the first component
of the input sine, and exhibit the SR phenomenon, as well in %o 100 50 200
o9 as ingy. This resultis confirmed in figures 4, 5, 7 and 8. o

Hence such a system can create 2-dimensional SR. Notice

that the form of|x; (\o)| here is simply the symmetric of ~Figure 2:1-d case: Theoretical and experimental SNR ver-
Ixo(Ao)| againsizy = o,. The SNR are not depicted here, Suso?. by is uniform,c = 10, \ = .04 ande = .25.

but show the same properties as the susceptibilities.

40

4. CONCLUSION.

We have recalled in this paper that SR, that is initially a
physical phenomenon, can possibly be used in signal pro-
cessing to amplify small noisy sines. We than suggest that
this kind of discrete-time SR can be extended@imensio-

nal SR, studying a particular 2-dimensional AR(1) system.
We then show that such an extension gives some interest-
ing results. Indeed, it can particularly shown that the first
component of the elliptic input can be amplified by the sec-
ond component of the input noise! We currently, study the
extension to generatdimensional AR(1) systems.

Figure 3:2-d case:|xo(A\o)| versussy andoy . b, is Gaus-
sian,c = 10, a« = 1.75and )\ = .02.
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Figure 4: 2-d case:|xo(Xo)| versuso, for some fixedr .
b, is Gaussiang = 10, « = 1.75 and A = .02.

Figure 5: 2-d case:|xo(Xo)| versuso; for some fixedr.
b, is Gaussiang = 10, « = 1.75 and A = .02.
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Figure 6:2-d case:|xo(\o)| versusoy andoy. b, is Uni-
form,c =10, = 1.75 and X = .02.
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Figure 7: 2-d case:|xo(Ao)| versusoy for some fixedr .
b, is Uniform,c = 10, a = 1.75 and XA = .02.
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Figure 8: 2-d case:|xo(Xo)| versuso; for some fixedry.
b,, is Uniform,c = 10, a = 1.75 and X = .02.
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