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ABSTRACT

In this paper we study chaotic signals generated from Chua’s
circuit: in particular we concentrate on the well known spi-
ral attractor. Chaotic signals have a nonstationary nature,
and hence the classical Fourier spectrum turns out to be
inadequate for the analysis. Instead of it we use Time-
Frequency Distributions, a powerful set of tools specifically
designed for nonstationary signal analysis. Time-Frequency
analysis shows that the considered chaotic signals are mul-
ticomponent, and can be thought as the sum of amplitude
modulated (AM) signals with a constant carrier frequency.
The basic components are extracted with a zero-phase dis-
tortion filtering, and the validity of the AM representation
with constant carrier frequency is then verified. An approx-
imation of the original chaotic signal is obtained summing
up a limited number of its filtered components. The valid-
ity of this approach is verified by comparing the original
chaotic attractor with that built through the approximated
signals.

1. INTRODUCTION

In the last few years there have been significant advances in
the study of chaotic systems and signals. It has been shown
that chaotic signals and systems are useful to model several
nonlinear phenomena occuring in physics, chemistry, biol-
ogy and ecology (see [1]).

We consider the signals generated by a well known chaotic
system: Chua’s oscillator (see [2], [3]). This circuit, despite
its simplicity, exhibits a large number of chaotic attractors
[3]. As a case-study we restrict our attention to the well
known spiral attractor (that can be observed in other chaotic
systems, like Rossler’s system).

Owing to the complex nature of a chaotic waveform,
they have been mainly investigated through time-domain
techniques: in fact the Fourier spectrum is not able to well
represent the nonstationary nature of a chaotic signal.

We want to show that the Time-Frequency plane [4] is
the correct domain to study chaotic signals. The application
of Time-Frequency Distributions to chaotic systems has al-
ready been considered in [5] and [6], where a first order

qualitative analysis is presented: however, the obtained re-
sults cannot be used to achieve an efficient representation of
the chaotic signal. We will show that, since chaotic signals
have a multicomponent nature, they can be thought as the
sum of amplitude modulated one-component signals with a
constant carrier frequency. Firstly these basic components
are extracted through classical digital filtering techniques.
The validity of the representation of such extracted compo-
nents as constant carrier frequencies with amplitude mod-
ulation is tested. Then it is verified that few components
yield an accurate representation of the original chaotic sig-
nal. Therefore, as a consequence result of such analysis is
the possibility of reconstructing a chaotic signal by means
of a simple model where few elementary modulated signals
are generated and superimposed.

2. GENERATION OF CHAOTIC SIGNALS

The Chua’s oscillator is a very simple circuit, made by two
capacitors, one inductor, a nonlinear resistor and some lin-
ear resistors. The circuit can be described in the state space,
taking as state variables the voltages on the two capacitors
and the current through the inductor. The result is a system
of three ordinary differential equations, that can be solved
numerically for each set of initial conditions. In this work
we generate the chaotic signals using a normalized version
of this system of equations, defined as

8<
:

dx
dt = k�(y � x� f(x))
dy
dt = k(x� y + z)
dz
dt = k(��y � z)

(1)

where

f(x) = m1x+
1

2
(m0 �m1)fjx+ 1j � jx� 1jg

is the piecewise linear characteristic of the nonlinear resistor
(other choices forf(x) are still possible to observe chaos).
The normalized state variablesx(t); y(t); z(t) are related
respectively to the voltages of the two capacitors, and to
the current through the inductor. Depending on the value
of the parameters�; �; , the circuit is able to generate sev-
eral chaotic attractors. We restrict our attention to the spiral
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Figure 1: Signalx(t) for the discrete time intervalt =
[1000; 1200]

attractor. To do this, we choose the following parameters:

� = 8:50000425 � = 14:2857143  = 0
m0 = �1:142857144 m1 = �0:714285715 k = 1

Every signalx(t); y(t); z(t) is generated through the nu-
merical algorithm described in [7] and is made of 8192 sam-
ples. In Fig. 1 the signalx(t) is represented.

3. TIME-FREQUENCY ANALYSIS OF CHAOTIC
SIGNALS

The classical spectrum analysis plays a crucial role in un-
derstanding the properties of a stationary signal. On the
contrary, many problems arise in the interpretation of the
spectrum of a nonstationary signal, althought it can be still
correctly evaluated. The main problem is that the Fourier
spectrum is not able to locate some isolated ”events” which
occur in the temporal evolution of the signal itself. This is
due to the periodic behaviour of the basis functions in the
Fourier expansion.

3.1. Time-Frequency Analysis

Time-Frequency analysis [4], has been created to overcome
these limitations. The basic idea is to map the 1D signal
s(t) under study in the so called Time-Frequency plane (TF
plane), whose axis are precisely the timet and frequencyf .
The goal is to spread the instantaneous spectral information
of the signal in this plane, making it possible to localize the
various events occuring in the signal.

The mapping in the TF plane is called Time-Frequency
Distribution (TFD) or Time-Frequency Representation (TFR).

TFD can be linear, as for the Short-Time Fourier Transform
(STFT) and the Continuous Wavelet Transform (CWT). They
are calledbilinear if the signal appears multiplied by itself,
or generally of ordern if its power ofn is used. The bilinear
class is also calledenergetic class, because the order 2 of the
mapping implies that the TF plane is a representation of the
energy of the signal in every(t; f) region. A subset of the
bilinear class is theCohen class, which collects the TFDs
that are invariant under time-frequency shifts. The Wigner
Distribution (WD) is the most important distribution in this
class. It is defined as

W (t; w) =
1

2�

Z +1

�1

s�
�
t�

�

2

�
s
�
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�

2

�
e�j�!d�

where! = 2�f ands(t) is the analytic signal of the sig-
nal to analyze. Many others TFDs are designed starting
from the WD. Despite of the great number of mathemati-
cal properties of the WD, it has two important limitations:
it can be locally negative (and hence of difficult interpre-
tation) and it is affected by Interference Terms (IT). IT are
particularly present when analysingmulticomponent signals
(signals that can be seen as the sum of many basic one-
component signals). This is due to the fact that the WD
is bilinear, and hence the square of the sum of many signals
produces many double product terms, precisely the IT.

Many TFDs have been designed to overcome these prob-
lems. In particular in this work we use the Smoothed Pseudo-
Wigner Distribution (SPWD), defined as

SPWD(t; !) =

ZZ
g(t� t0)H(w � w0)W (t0; w0)dt0dw0

which performs a sophisticated 2D filtering of the WD using
two smoothing windowsg;H , able to reduce the IT. This is
an important feature, because of the multicomponent nature
of chaotic signals.

3.2. SPWD of Chaotic Signals

The classical Fourier analysis reveals thatx(t),y(t),z(t) are
multicomponent signals, as observed in Fig. 2, where the
power spectrum ofx(t) highlights the presence of a major
energy concentration around a certain number of frequen-
cies. The same behaviour can be observed by using a TFD
analysis. However, if the signal is made ofN components,
the IT phenomenon arises. The number of IT is given by the
Newton binomial(N; 2) = N(N � 1)=2, and hence grows
with O(N2). The choice of a filtered TFD able to reduce
the IT becomes necessary. In this work we use a SPWD,
with a Hanning window for bothg(t) andH(w). In Fig.
3 the SPWD of the signalx(t) is shown. The horizontal
axis is the normalized frequencyf , while the vertical axis
represents the normalized timet. The frequency resolution
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Figure 2: Power spectrum of the signalx(t) shown if Fig.
1. The horizontal axis shows the normalized frequency. The
vertical axis is in logarithmic scale

is 1/256. The visualization software draws a slice for ev-
ery discrete time valuet: every slice represents the SPWD
evaluated at timet on the 256 points of the frequency axis.

3.3. Multicomponent Representation

The SPWD confirms thatx(t) is a multicomponent signal.
In Fig. 3, it is possible to recognize four major energy con-
centrationsx1(t); : : : ; x4(t), located around the normalized
frequency valuesf1 = 0; f2 = 0:075; f3 = 0:15; f4 = 0:3.
(the same result holds also fory(t); z(t)). Every component
is concentrated around its central frequencyfi, and exhibits
a time-varying spread about it. This spread can be expressed
as the local variance�!jt, and it can be linked to the concept
of instantaneous bandwith (see [4]), defined as

Bt =

����A
0(t)

A(t)

���� (2)

whereA(t) is the instantaneous amplitude defined as the
modulus of the analytic signal, andA0(t) denotes its deriva-
tive. The spread in frequency is clearly time-dependent for
every component, and this means that the local bandwidth is
a time-varying function. Due to the time-varying nature of
Bt, from (2) we infer that alsoA(t) must be a time-varying
function, and hence a simple model for thei-th component
of the type

xi(t) = Ai(t)e
j!it (3)

can be introduced. Notice that this representation cannot be
inferred if only the Fourier spectrum is considered. This is
due to the fact that the power spectrum shows how the total
power of the signal is divided on every frequency compo-
nent for theentire durationof the signal, and is not able to
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Figure 3: SPWD of signalx(t). Thez axis is in logarithmic
scale

localize and hence represent the time variation of every in-
stantaneous component. TF analysis turns out to be a crucial
tool to localize and correctly represent this kind of instanta-
neous spectral properties.

Another interesting point is that chaotic signals produced
in the spiral attractor case can be seen as the limit of an
infinite sequence of period-doubling bifurcations. The bi-
furcation process is obtained by monotonically varying a
parameter (for example�), called the bifurcation parame-
ter. The interest in this fact is that if the bifurcation process
is stopped before reaching the chaotic region, we always
observe a signal made of a finite number of frequencies,
and hence with a power spectrum made of a finite number
of spectral lines. But in the chaotic region, the TF plane
shows that a good signal representation is the sum of the
one-component signals modelled as in (3). The next natu-
ral step is to extract these one-component signals, with the
goals to

� check if they are really made of a carrier frequency
with amplitude modulation, as inferred from the TFD;

� build an approximation of the original chaotic signals
by direct summation of these components, and test
the validity of the reconstruction.

4. COMPONENT EXTRACTION

The extraction of the basic one-component signals of every
state variable has been done by digital filtering. The extrac-
tion has been limited to the four highest energy components
of each chaotic signal. We have designed the four digital fil-
ters looking at the TF plane obtained forx(t), but the same
filters have been applied toy(t) andz(t). The used filter is
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Figure 4: Continuous line: filtered componentx3(t). Dot-
ted line: instantaneous amplitudeA3(t) obtained from the
analytic signal ofx3(t)

a Butterworth bandpass filter, with its center frequency co-
incident with the carrier frequency, to exploit its maximally
flat behaviour for reducing amplitude distortion.

Care must be taken with the phase distorsion introduced
by the filter. In fact the time-varying spectral properties of
the chaotic signals (well represented in the TF plane) are
related to the instantaneous phase of the signal: therefore it
is very important to reduce the phase distorsion to the min-
imum. This has been done with a zero-phase distortion fil-
tering, by filtering the signal, reversing the output, filtering
and reversing again. The resulting output is a signal with the
same phase of the input. In Fig. 4 we show the filtered out-
put x3(t). The dotted line represents the amplitudeA3(t)
obtained computing the modulus of the analytic signal of
x3(t). In Sect. 5 we justify the representation of the filtered
component as a constant carrier frequency with amplitude
modulation.

5. VALIDATION OF THE AM REPRESENTATION

We want to check if the filtered one-component signals are
really made of a constant carrier frequency with amplitude
modulation. To do this we consider as an example the ex-
tracted componentx3(t), and we evaluate its instantaneous
phase'3(t) as the phase of its analytic signal. WithA3(t)
we still represent the modulus of the analytic signal as in
Sect. 4. Since in general the instantaneous frequencyfi(t)
is related to the phase in a differential way [4]

fi(t) =
1

2�
'0(t)
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Figure 5: Instantaneous phase of the analytic signal com-
puted for the filtered signalx3(t).

andf3(t) has to be constant, then'3(t) must be a linear
function oft. In Fig. 5 the computed phase'3(t) is shown,
and it is possible to notice that it presents a very good qual-
itative linear behaviour. To be sure of the linearity of'3(t),
we build a synthetic signal defined as

s3(t) = A3(t)e
j'̂3(t)

forcing its phase to be a linear function oft

'̂3(t) = a � t+ b

The parametersa; b are then evaluated with a least square
minimization with respect to the target phase'3(t). In
Fig. 6 the signalx3(t) and the approximations3(t) are com-
pared on a small time interval. It is possible to notice the
validity of the AM representation.

6. RECONSTRUCTION OF THE SPIRAL
ATTRACTOR

We show that the original chaotic signalsx(t),y(t),z(t) can
be accurately approximated by signals~x(t),~y(t),~z(t), ob-
tained by summing a small number of filtered components,
extracted as indicated in the previous section.

In the present example a good reconstruction is obtained
by using only four components. For example,~x(t) turns out
to be represented as

~x(t) =

4X
i=1

xi(t) =

4X
i=1

Ai(t)e
j!it

The accuracy of the approximation is verified by comparing
the phase state representation of the original and of the re-
constructed signal. The result is shown in Fig. 7, where it is
possible to appreciate the quality of the reconstruction.
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Figure 6: Comparison between the filtered componentx3(t)
(continuous line) and the linear phase synthetic signals3(t)
(dotted line).
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Figure 7: Phase planes of the original and of the recon-
structed attractor. In the left column the original phase
planes(x; y) and (x; z) of the spiral attractor are repre-
sented, while in the right column the corresponding recon-
structed versions are shown

7. CONCLUSIONS

In this paper we have analyzed chaotic signals coming from
Chua’s circuit when its parameters are chosen to lead to a
spiral attractor. The study has been done by Time-Frequency
Distributions, a powerful set of tools specifically designed
for the analysis of nonstationary signals.

The representation in the Time-Frequencyplane has shown
that such chaotic signals are multicomponent. In particular
they can be thougth as the sum of amplitude modulated one-
component signals with a constant carrier frequency. With a
zero-phase distortion filtering we have extracted these com-
ponents and checked the prevision made on their nature.
Then we have shown that by summing a small number of
these components, a good approximation of the original chaotic
signal may be obtained.
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