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ABSTRACT

The problem of parameter estimation in chaotic noise
is considered in this paper. Based on the inherently
deterministic nature of a chaotic signal — the short
term predictability, a novel estimation approach called
minimum nonlinear prediction error (M) technique is
proposed. The parameters of a signal can be accu-
rately estimated by minimizing the nonlinear predic-
tion error of the output of an inverse filter of the re-
ceived signal. Monte Carlo simulations are carried out
to demonstrate the efficiency of the MNPE approach.
It is shown that not only could the chaotic approach
provide an accurate estimation, but it is more effective
than the conventional statistic approach in the sense
that the chaotic estimation approach has a smaller mean
squares error (MSE).

1. INTRODUCTION

Recent developments in nonlinear dynamics and chaos
theory suggest that it may be possible to develop new
and powerful alternative strategies for signal process-
ing and communications [1]-[3]. A wide range of sig-
nal such as radar [1], speech [4], and indoor propaga-
tion [5] have been demonstrated to be chaotic rather
than purely random. The development of new classes
of signal models may naturally lead to new kinds of
algorithms for processing such signals to obtain bet-
ter performance that explicitly take into account their
special structure.

The notions of using chaotic signals for signal pro-
cessing applications have received increasing interest
over the last few years [1],[6]-[9]. In some cases, it

is the chaotic signal that is direct interest and is cor-
rupted by random noise [2]. The problem becomes one
of estimating a chaotic signal in noise. In other scenar-
ios such as radar surveillance [1] and system identi-
fication in a chaotic modulation communications [9],
the chaotic signal is a form of noise or other unwanted
signal. In this case, we are interested in estimating
an unknown signal in a background of chaotic noise.
The former problem, which is basically the problem of
parameter estimation of a nonlinear system in random
noise, has been addressed by various researchers using
various approaches including filtering [10], shadowing
theory [11] and so on. The latter problem, which is to
estimate parameters of a signal embedding in chaotic
noise, is considered by Leung and Huang [8]. A min-
imum phase space volume (MPSV) approach is pre-
sented. The approach, which exploits that a chaotic
signal has a finite volume in an embedded phase space,
can provide an accurate estimation. However, the com-
putational load of the phase space volume is heavy.

In this paper, we consider the problem of estimat-
ing parameters of a signal embedding in chaotic noise.
A novel technique called minimum nonlinear predic-
tion error (MNPE) is developed. The MNPE approach
is based on the idea that a chaotic signal can be mod-
elled by a deterministic function called nonlinear pre-
diction function, and can be predicted in short term.
To estimate the parameters, the received signal is first
passed through an inverse filter, and then the parame-
ters can be estimated by minimizing the nonlinear pre-
diction error of the output signal of the inverse filter.
It is shown that the parameters of the inverse filter will
approach the correct parameters of the signal to be es-



timated as the nonlinear prediction error of the out-
put signal goes to the minimum. Compared with the
MPSV approach, the MNPE approach has low compu-
tational load. An autoregressive (AR) model driven by
a chaotic noise is used in numerical simulations. The
MNPE approach and conventional least squares (LS)
approach are applied to estimate the coefficients of the
AR model. We investigate the effects of the number of
points for estimation, the difference between the ap-
proximated nonlinear prediction function and desired
function, and noise in the received signal on the esti-
mation performance of the two approaches. The re-
sults show that the MNPE approach obviously outper-
forms the LS approach in the sense that it has smaller
mean squares estimation error.

2. THE MINIMUM NONLINEAR
PREDICTION ERROR ESTIMATION

TECHNIQUE

The estimation problem in this paper is formulated as
follows:

xn = sn(�0) + wn; (1)

where
xn received signal
sn signal of interest
wn chaotic noise
�0 parameter vector to be estimated

Suppose the system which generates the chaotic
noise is smooth, nonlinear function. According to the
Takens embedding theorem [12], if a positive integer
d is sufficiently larger than the attractor dimension,
then and-dimensional embedding will give in general
a faithful representation of the attractor, and there is a
nonlinear prediction function satisfying

wn = f(wn�1); (2)

wherewn�1 = (wn�1; wn�2; � � � ; wn�d). Based on
the prediction function, one step nonlinear prediction
error (NPE) can then be defined as

P (w) =
1X

n=d+1

(wn � f(wn�1))
2: (3)

To apply NPE to the estimation problem in (1), an
inverse filter approach is employed here. More pre-
cisely, an inverse filterun = xn � sn(�) for the re-
ceived signal is constructed, and the signal model is

substituted into the inverse filter to getun = sn(�0)�
sn(�)+wn. The following theorem shows that by min-
imizing the nonlinear prediction error ofun, the pa-
rameter vector� of the inverse filter will converge to
�0.

Theorem 1: If sn(�) is linear, then� = �0 if and
only if P (u) is minimum.

Proof: For the only if part, if� = �0, thenun =
wn, and hence,P (u) = P (w) = 0. From the def-
inition of prediction error, we know thatP (u) � 0,
therefore,P (u) = 0 is a minimum.

For the if part, assume that besides�0, there is
another parameter vector�1 minimizing the nonlinear
prediction error. Letŵn = xn � sn(�1) and corre-
sponding prediction error beP (ŵ). When� = �0,
P (w) = 0, soP (ŵ) = 0. That is

ŵn = f(ŵn�1); (4)

whereŵn�1 = (ŵn�1; ŵn�2; � � � ; ŵn�d)
T.

Subtracting (2) from (4) gets

"n = f(wn�1 +�n�1)� f(wn�1); (5)

where"n = sn(�0)�sn(�1) and�n�1 = ("n�1; "n�2;� � � ;
"n�d)

T. While the right side of ( 5) is the nonlin-
ear function of�n�1, there only exists linear relation-
ship between"n and�n�1 in the left side because the
sn(�) is linear. Thus ( 5) can not hold except that
"n�i = 0; i = 0; 1; � � � ; d, that is,sn(�1) = sn(�0)
for all n. In other words,�1 = �0 as the parameter
vector insn(�) is identifiable. Therefore, only when
� = �0, P (u) is minimum. 2

Theorem 1 tells us that the parameter vector can be
accurately estimated by minimizing the nonlinear pre-
diction error of the output of the inverse filter. For ap-
plications such as equalization of a chaotic communi-
cations system where the functional form of a chaotic
signal is known as a prior, the exact nonlinear predic-
tion function can be used. When the MNPE method is
applied real signals such as speech deconvolution, the
unknown mapping can be approximated using an ap-
proximation prediction function constructed by a uni-
versal function such as neural network and radial basis
function. Let the approximation prediction function be
f̂ .

Given the received signalfxn; n = 1; 2; � � � ; Ng,
and the approximated prediction function̂f , the pa-
rameter estimation using the MNPE technique can be
summarized in the following steps:



1. Construct an inverse systemun = xn � sn(�);

2. Embedun into ad-dimensional phase space us-
ing the delay coordinate method and compute
the NPE of the output of the inverse filterun

P (u) =
NX

n=d+1

(un � f̂(un�1))
2; (6)

whereun�1 = (un�1; un�2; � � � ; un�d); and

3. Minimize the NPE in (6) with respect to the pa-
rameter vector�.

Note that the minimizing NPE in (6) is generally
a nonlinear optimization problem. Here we use the
random research technique to look for the global opti-
mization solution. In particular, we use 2000 different
points to initiate the optimization and take the best one
as the solution.

3. COMPUTER SIMULATIONS

In this section, we evaluate the effectiveness of the
MNPE approach by applying it to estimate the coef-
ficients of an AR model:

xn =
pX

i=1

aixn�i + wn

= 0:195xn�1 � 0:95xn�2 + wn: (7)

The coefficients in (7) are chosen to have a stable AR
model. The chaotic signalwn is generated by the lo-
gistic map:

wn = �wn�1(1� wn�1): (8)

When� = 4, wn is a white process.
Following the MNPE algorithm in Section 2, an

inverse AR modelun = xn � â1xn�1 � â2xn�2 is
first constructed. The NPE ofun is then computed and
minimized by varyingâ1 and â2. Figure 1 plots the
nonlinear prediction errorP as an error function of the
coefficientsâ1 and â2. As we can see, the error sur-
face has a very sharp unimodal shape, and the correct
parameter values are located right at the minimum of
P (i.e., the maximum in Fig. 1, which displays1=P
for a clearer illustration).
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Figure 1: Prediction error versus the coefficients in the
inverse filter.

Monte Carlo simulations are performed to inves-
tigate the effectiveness of the chaotic estimation ap-
proach. We used the mean squares error defined as

MSE =
1

T

TX

i=1

[(â1(i)� a1)
2 + (â2(i)� a2)

2]; (9)

as a measurement of the estimation accuracy, whereT
is the number of trials.

First we consider the MSE of MNPE approach us-
ing different number of points for estimation and plot
the results in Fig. 2. In this experiment,d = 1,
f̂(x) = 4x(1 � x), andT = 500. The estimation
performance of LS approach is also given in Fig. 2.
The MSE of the LS approach decreases with increas-
ing number of pointsN . When8 points are used in the
estimation, the MSE of the LS approach is about -8dB,
whereas for 250 points, its MSE is about -17dB. How-
ever, the MNPE approach remains the same MSE level
(about -35dB) for all number of points. Compared
the performance of the two approaches, the MNPE ap-
proach consistently outperforms the LS approach in all
cases. The difference ranges from 18dB (N �250) to
27dB (N=8).

Next we investigate the effect of the difference be-
tween the approximated prediction function̂f and de-
sired f on the performance of the MNPE approach.
Here we fixd = 1, N = 56, T = 500, and varya
from 1.9 to 4 in the approximated prediction function
f̂(x) = ax(1 � x). Figure 3 presents the results. As
expected, the MSE of the MNPE approach decreases



with increasing the difference betweena and� = 4.
The MSE is about -27dB whena = 1:9, and about -
35dB whena = 4. The LS approach is independent
of a, and has the same MSE (-13dB). Apparently, the
MNPE approach has smaller MSE even if there exists
a relatively large difference between the approximated
prediction function and desired one.

We finally study the effects of noise in the received
signal on the performance of two approaches. More
precisely, the received signalxn in the algorithm of
Section 2 is replaced byyn = xn + vn, wherevn is a
Gaussian white noise process with zero mean. Its vari-
ance is varied to obtain different signal to noise ratios
(SNR’s). The simulation results in Fig. 4 show that
the noise in the received signal has large effect on the
performance of two approaches, especially the MNPE
approach. When SNR�45dB, the MSE of the LS ap-
proach is about -13dB, and the MSE of the MNPE ap-
proach is about -35dB. The difference between them
is 22dB. The difference decreases with increasing the
variance of the Gaussian noise. When SNR=30dB,
the difference becomes 10dB, and when SNR=10dB,
the difference is almost zero. Thus the MNPE ap-
proach has better estimation performance than the LS
approach for high SNR’s, and the two approaches has
the same performance for low SNR’s.

100 200 300 400 500 600 700 800 900 1000
−40

−35

−30

−25

−20

−15

−10

−5

N

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
dB

)

LS

MPE

Figure 2: Comparison of the mean squares error of
the MNPE and LS approach using different number of
points.
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Figure 3: Comparison of the mean squares error of the
MNPE and LS approach with differenta in the approx-
imated prediction function.
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Figure 4: Comparison of the mean squares error of
the MNPE and LS approach versus SNR when the re-
ceived signal exists Gaussian noise.



4. CONCLUSIONS

We have proposed a novel approach called minimum
prediction error (MNPE) for the parameter estimation
in the chaotic noise. This approach exploits the inher-
ently deterministic nature of a chaotic signal. More
precisely, a chaotic signal can be predicted in the short
term using a nonlinear prediction function. It is shown
that the parameters can be accurately estimated by min-
imizing the nonlinear prediction error of the output of
an inverse filter. Compared with the LS approach, the
MNPE approach has smaller mean squares estimation
error.

5. REFERENCES

[1] H. Leung and T. Lo, “Chaotic radar signal pro-
cessing over the sea,”IEEE J. Oceanic Eng.,
vol. 18, pp. 287-295, 1993.

[2] S. Kay and V. Nagesha, “Methods for chaotic
signal estimation,”IEEE Trans. Signal Process-
ing, vol. 43, pp. 2013-2016, 1995.

[3] B. Chen and G. W. Wornell, “Analog error-
correcting codes based on chaotic dynamical
systems,”IEEE Trans. Commun., vol. 46, pp.
881-890, 1998.

[4] A. Kumar and S. K. Mullick, “Attractor dimen-
sion, entropy and modelling of speech time se-
ries,” Electron. Lett., vol. 26, pp. 1790-1791,
1990.

[5] C. Tannous, R. Davies, and A. Angus, “Strange
attractor in multipath propagation,”IEEE Trans.
Commun., vol. 39, pp. 629-631, 1991.

[6] A. V. Oppenheim, G. W. Wornell, S. H. Isabelle,
and K. M. Cuomo, “Signal Processing in the
context of chaotic signal,” inProc. Int. Conf.
Acoust., Speech, Signal Processing, vol. 4, pp.
117-120, 1992.

[7] S. Haykin and X. B. Li, “Detection of signal in
chaos,”Porc. IEEE, vol. 83, pp. 95-122, 1995.

[8] H. Leung and X. Huang, “Parameter estimation
in chaotic noise,”IEEE Trans. Signal Process-
ing, vol. 44, pp. 2456-2463, 1996.

[9] H. Leung, “System identification using chaos
with application to equalization of a chaotic
modulation system,”IEEE Trans. Circuits Syst.
I, vol. 45, pp. 314-320, 1998.

[10] E. J. Kostelich and T. Schreiber, “Noise reduc-
tion in chaotic time series data: A survey of
common approach,”Phys. Rev. E, vol. 48, pp.
1752-1783, 1993.

[11] S. H. Hammel, “Noise reduction approach
for chaotic systems,”Phys. Lett. A, vol. 148,
pp.421-428, 1990.

[12] F. Takens, “Detecting strange attractor in turbu-
lence,” inDynamical Systems and Turbulence,
New York: Springer, pp. 366-381, 1980.


