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ABSTRACT
Globally coupled map (GCM) model can evolve through chaotic
searching into several stable periodic orbits under properly
controlled parameters. This can be exploited in information
processing such as associative memory and optimization. In this
paper, we propose a novel covariance learning rule for
multivalue patterns and apply it in memorization of gray-scale
images based on modified GCM model (S-GCM). Analysis of
the retrieval results are given finally.

1. INTRODUCTION

Recently, further understanding of chaotic dynamics and
the mechanism of cognition in mammalian brain provide
extensive theoretical basis for the application of chaos in
information processing [1-3]. In [2] it is reported that in
rabbit olfactory bulb, limit cycle activities occur for
perceptible specific odors but chaotic activities occur for
novel odors. Kaneko [4] proposed the “globally coupled
map (GCM)” model whose main property is that by
adjusting the parameters, all the units of the model will
split into several periodic attractors called cluster frozen
attractors. The units belonging to the same cluster come to
follow an identical orbit. This can be viewed as a
procedure evolving from chaotic searching to memory
locking and to some extends it is in accordance with the
biological experiment mentioned above.

Ishii et al. proposed a modified GCM model (S-GCM)
[5] which can be applied to associative memory of
characters. But it is invalid for multivalue patterns.
Although we can convert multivalue patterns into binary
ones by hierarchical coding and memorize as binary
patterns, it will enlarge the network scale greatly. In
addition, any retrieval error of significant bits will leads to
isolate singular points. Based on the characteristics of S-
GCM, we construct an associative memory system for
gray-scale images. Finally, we discuss the retrieval results.

2. NEURAL NETWORK MODEL

The only difference between S-GCM and GCM model is
that the former employs a cubic function instead of the
logistic map. The model is described as:
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where xi(t) denotes the ith unit’s value at time t, and N the
number of units. The summation part in (1) is the average
feedback from all the units. ε is coupling strength. Each
unit’s dynamics is almost given by the cubic function
described in (2). α is bifurcation parameter of f(x) and for
α∈[3.3, 4] the function is in chaotic state. The cubic
function has two extrema in its range when α>2.

Fig. 1. Phase diagram of S-GCM

    The spatiotemporal features of the S-GCM attractors are
determined by both α and ε. As α increases, the S-GCM
becomes chaotic and as ε increases, it becomes coherent,
or stable. Fig. 1 shows a rough phase diagram of the S-
GCM, where the attractors are classified according to their
spatiotemporal features [4-5]:
    1. Coherent phase (see area (a) in Fig. 1): When α is
small and ε is large, all the units fall into the same orbit
called “coherent attractor”.
    2. Ordered phase (area (b)): Cluster frozen attractors
occur in this phase. It is divided into several subareas by
the dominant number of clusters marked in square brackets
in Fig. 1. The number of clusters increases in the manner
of 2,4,8,... as α increases or ε decreases. The borders
between these subareas become vague as ε increases. The
S-GCM has a much larger ordered area than the GCM [5].
    3. Partially ordered phase (area (c)): Attractors fall into
a large number of clusters in some cases and a small
number of clusters in other cases, i.e. the attractors vary
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depending on their initial states.
    4. Turbulent phase (area (d)): When α is large and ε is
small, the dominant component of feedback is from each
unit itself, and each unit follows its own chaotic orbit.
    In the follows we analyze the dynamics of the model by
exploiting the Lyapunov exponent. For the coherent
attractor with xi=xj for all i, j, the motion is governed just
by the single cubic map. The Jacobi matrix Jt for Eq. (1) is
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where I is identity matrix and D the constant matrix whose
elements are all 1. Then the stability of this attroctor is
calculated by:
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After simple algebra, we obtain the eigenvalues γ=Γ1

and ),...,2( )1( Njj =−=Γ εγ . Here γ=exp(λ0) and λ0 is

the Lyapunov exponent of cubic map. The eigenvector
corresponding to the eigenvalue γ is given by

TN )1,...,1,1)(/1( . Thus the amplification of a disturbance

along this eigenvector does not destroy the coherence.
Eigenvectors for the other N-1 eigenvalues are not uniform
and the amplification (which occurs if 1|| >Γ j ) along these

vectors will destroy the coherence. Thus the stability
condition of the coherent attractor is given by 1|)1(| <− εγ .

    If our system falls into a k-cluster attractor with
(N1,N2,...,Nk) where Ni is the number of elements for the ith
cluster and N1≥N2≥�≥Nk, our system will never goes out
of the state with this clustering if the motion for xi and xj at
time t′>t are governed by exactly the same dynamics, i.e.
xi(t′)=xj(t′) exists if xi(t)=xj(t). Therefore, to destroy the
coherence within a cluster, amplification of a small
disturbance xi-xj must occur in it. This condition is again
calculated by the products of Jacobi matrices for (1), as in
Eq. (4). If all the absolute values of eigenvalues of (4) are
less than 1, the state is obviously stable (the attractor is
periodic). If all the elements of an eigenvector
corresponding to the eigenvalue whose absolute value is
larger than unity take an identical value in each cluster, the
amplification of a disturbance along this eigenvector does
not destroy the coherence within each cluster as well.
    In the partial ordered area and turbulent area, numerical
calculation gives that the largest Lyapunov exponent is
large and its value is positive [5], which means that the S-
GCM in those areas is chaotic.

3. MULTIVALUED PATTERN
ASSOCIATIVE MEMORY

When the parameters are in the ordered area, the output of
the network is almost equal to the input which means the
network is in preserving mode. With some parameter

values in the turbulent area, each unit shows a chaotic
searching motion, i.e. the network is in searching mode. In
binary pattern associative memory system [5], parameter α
or ε is adjusted according to a match criterion to control
each unit switching between this two modes. The time
when all the units evolve into preserving mode and fall in
cluster frozen attractors, the output of the network is the
memorized pattern required.
    Let each cluster represent one kind of values in a pattern,
and modify the learning rule accordingly, the S-GCM can
be extended to process multivalue patterns. Here we show
this process by exploiting four-cluster frozen attractor to
memorize four-gray-scale images.
    Because the state value of each unit is continuous and
the element value of pattern is discrete, conversions are
needed at the input and output of the network. Assume that
the final state values of the four clusters are xa, xb, xc and xd,
respectively in decreasing order, the correspondent
element values in pattern are 3, 2, 1 and 0. The convert
function of the input is defined as:
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in which rnd is a small random number. The output of si(x)
is also the initial state of the network.
    Given a set of N-dimensional sample patterns
{ p1,p2,...,pm},  pi

k∈{0,1,2,3}, i=1,2,...,N. We construct a
multivalue covariance learning rule similar to Hebb rule:
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where sgn(x)=1 or -1 for x≥0 or x<0, respectively.
    Since the value of α in each unit is adjusted
continuously and unit-wisely in the procedure of retrieval,
it is time-vary and different in each unit. Therefore, the
model should be rewritten as:
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The value of αi;t is adjusted according to the energy
function of each unit which is defined as:
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in which so(x) is the inverse of si(x). It converts the state of
network to the output pattern:
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    αi;t is adjusted according to the matching degree of
present state value xi to sample pattern which is evaluated
by Ei:
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Each α is controlled to be between αmin and αmax. f#Ù
(f∨αmin )∧αmax is cutoff function, γ is a factor controlling
the adjustment step. Th is the threshold of energy function,
here Th=0.5. In order to arrive at a tradeoff between
sufficiently searching in state space with present α of each
unit and a much fast convergence rate, the modifying of α
is done once every 2 time steps.
    If Ei is greater than Th which means that the unit value xi

does not suit the pattern to be retrieved, αi increases and
this unit will evolve into chaotic motion and search for the
proper state within the range. When the unit suits the
pattern, Ei becomes small and αi decreases. In this case,
the unit-wisely  processing mode will change from
searching to preserving. When every unit falls into
preserving mode, all the αi will reduce to αmin eventually
and the whole system reaches cluster frozen attractor.
Thereby the output of the network equals to the pattern to
be retrieved. If the input contains too high a noise as to run
out of the basin volume of the corresponding pattern or the
input isn’t one of the memorized patterns at all, the system
will always be in chaotic searching and the energy keeps  a
high value.
    Therefore, we have the criterion for termination of
iterating: If the system’s total energy is great than a
threshold in certain time steps ts (ts is determined by trial
and error on considering the noise level and network scale),
the association procedure fails and will be stopped; If not,
the procedure will be terminated till all the αi decrease to
αmin and the output is just the retrieved pattern.

4. EXPERIMENTAL RESULTS

Given four 32×32 four-gray-scale images as learning
samples (see Fig. 2), the corresponding network scale is
N=32×32=1024. Let ε=0.1, αmin=3.4, αmax=4.0. The input
is pattern A disturbed with 10% random noise. Fig. 3
shows the output of network at different time. Fig. 4 gives
the evolution of several parameters and indices of the
network in which the normalized total energy of the system
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    In Fig. 4, highly chaotic motions are observed at the
early association state. As time elapses, these motions
become quiet, and the association is completed when the
system falls into a four-cluster frozen attractor after about
400 times of iteration. The Hamming distance between
pattern A and the output of the system decreases from 102
to 5 finally. According to Amit [6], the network succeeds
in memorizing m patterns, if the error rate of elements in
retrieved pattern after the transient period is less than 1.5%
when the input is one of the memorized patterns. So the
retrieval is successful in this context.
    Tab. 1 gives the numerical results of the four patterns
under different noise levels. The denominator and
numerator in each item are the Hamming distances of the
input and final output pattern with the corresponding noise
free pattern. We can see that the association is successful
even under 20% noise.

Tab. 1 Association of patterns under different noise levels

Pattern A Pattern B Pattern C Pattern D
10%
noise

5/102 7/131 6/119 6/108

20%
noise

9/218 8/208 11/230 7/210

5. CONCLUSION

In this paper we analyze the properties of S-GCM model
and extend the binary pattern associative memory system
to multivalue pattern case. The experiments show that by
properly adjusting parameters, the associative memory
network based on multivalue covariance learning can
successfully memorize and retrieve gray-scale images.
Although there are still a few pixels cannot be restored
completely, the difference is fairly small. In case of big
images with more gray scale levels, the influence of this
difference to the whole image is nearly neglectable
according to human visual psychophysics.
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Pattern A               Pattern B               Pattern C              Pattern D

Fig. 2  Sample patterns
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Fig. 3  Association procedure of the network. (a) is the input pattern A with 10% random noise;
(b), (c) and (d) are the output of the network after 100, 200 and 400 times of iteration, respectively.

               
0 50 100 150

-1

-0.5

0

0.5

1

0 50 100 150
0.35

0.4

0.45

0.5

t/4 t/4

xi E

(a)                                                                           (b)

               
0 50 100 150

3

3.2

3.4

3.6

3.8

4

0 50 100 150
0

50

100

150

t/4 t/4

α i Dh

(c)                                                                           (d)

Fig. 4  Evolution of parameters and indices in the network. (a) Time series of each unit’s output;
(b) Time series of normalized total energy E; (c) Time series of αi ; (d) Time series of Hamming distance


