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ABSTRACT

An attempt is made to solve two classes of nonlin-
ear time series prediction problems with a hierarchical
Bayes Approach using neural nets.

1. INTRODUCTION

When nonlinearity is involved, time series predic-
tion becomes a rather di�cult task where the conven-
tional linear methods have limited successes for various
reasons.

One of the greatest challenges stems from the fact
that typical observation data is a scalar time series so
that dimension of the nonlinear dynamical system (em-
bedding dimension) is unknown.

This paper proposes a Hierarchical Bayesian ap-
proach to nonlinear time series prediction problems.
This class of schemes considers a family of prior dis-
tributions parameterized by hyperparameters instead
of a single prior so that it enables algorithms less de-
pendent on a particular prior. One can estimate pos-
terior of weight parameters, hyperparameters and em-
bedding dimension by marginalization with respect to
the weight parameters and hyperparameters.

The proposed scheme is tested against two exam-
ples;

(i) chaotic time series, and

(ii) building air-conditioning load prediction.

2. FORMULATION

Problem A:

Given data set D := fxtg
N
t=0 � IR , predict

fxtg
T
t=N+1 .

Hypothesis H

Hypothesis or model consists of the following:

(i) Architecture:
e.g., three-layer perceptron with h hidden units
and a particular sigmoid function.

(ii) Likelihood:

P
�
fxtg

N
t=� ; fx��1; : : : ; x0g j w; �;H

�
:=

N��Y
t=0

1

ZD(�)
exp (��ED(xt+� j xt+��1; : : : ; xt;w))| {z }

noisy dynamics

� P (x��1; : : : ; x0 j H)| {z }
initial state uncertainty

(2.1)

ED(xt+� j xt+��1; : : : ; xt;w)

:=
1

2
(xt+� � f(xt+��1; : : : ; xt;w))

2(2.2)

where f(�) is neural net output, w 2 IRk the
weight parameters of a particular architecture,
� (unknown) uncertainty level, ZD(�) the nor-
malization constant, and � is embedding dimen-
sion (the order of the dynamics) which is un-
known. Equation(2.1) looks at fxtg as a � -th or-
der Markov process whose state transition prob-
ability density is given by the �rst factor whereas
the second factor is the initial state probability
density.

(iii) Prior for w:

P (w j �;H) :=
CY
c=1

1

ZW (�c)
exp(��cEWc(wc))

(2.3)

Ewc(wc) :=
1

2
jj wc jj

2 (2.4)

where w is decomposed into groups:

w := (w1; : : : ;wC) ; wc 2 IRkc ; (2.5)

� := (�1; : : : ; �C) ; �c 2 IR (2.6)

exp(��cEWc
(wc))=ZW (�c) represents the prior

belief on how wc should be distributed with (un-
known) �c and ZW (�c) is the normalization con-
stant.



(iv) Prior for (�; �), hyperparameters: P (�; � j H)

(v) Prior for H: P (H)

The goal of the prediction problem is to compute
the predictive distribution(density) P (fxtgTt=N+1 j D)
under (i) { (v). This paper �rst computes three levels
of posterior distributions as shown in Fig. 2.1 and use
them to compute the predictive distribution.

Level 1

P (w j D;�; �;H) =
P (D j w; �;H) P (w j �;H)

P (D j �; �;H)

Level 2

P(�; � j D;H) =
P (D j �; �;H) P (�; � j H)

P (D j H)

Level 3

P (H j D) =
P (D j H) P (H)

P (D)w�
Predictive Distribution

P (fxtg
T
N+1 j D)

=
X
H

Z Z Z
P (fxtg

T
N+1 j w; �;H)

� P (w;�; �;H j D)dwd�d�

Figure 2.1: Hierarchical Bayesian Structure

The most di�cult parameter to be estimated is � ,
the embedding dimension. In order to explain this, let
us �rst consider the linear dynamical system

yt+1 = Fyt; yt 2 IRK ; xt = GTyt; xt 2 IR
(2.7)

i.e., GT represents a linear observation, T being matrix
transpose. One can show that generically, that there is
a nonsingular matrix � such that

(xt; xt�1; : : : ; xt�K+1) = �yt

so that the K-dimensional delay coordinate system xt =
(xt; xt�1; : : : ; xt�K+1) preserves various properties of
(2.7). Well known AR model is described by

xt+1 =
K�1X
i=0

wixt�i + � (2.8)

where � is a noise process. Note that (2.1) contains
(2.8) as a special case where

f(w; xt; : : : ; xt�K+1) =
K�1X
i=0

wixt�i; � � i:i:d:N(0; 1=�)

Since AR model demands fwig be (asymptotically)
stable, the origin is the onlymeaningful invariant set.
In contrast, nonlinear dynamical system

yt+1 = F (yt); yt 2 IRK (2.9)

can naturally admit non-trivial stable periodic orbits,
invariant closed curves and even chaotic attractors which
typically have Cantor structure. Let Y � IRK be an
invariant set and let xt = G(yt); xt 2 IR be obser-
vation. Determining the number of delay coordinates
(xt; xt�1; : : : ; xt��+1) is non-trivial. The following is
due to Sauer and others [1].

Fact 2.1 Let the invariant set Y be a compact subset
of an open set U � IRK , with box counting dimen-

sion d 1 . If
� > 2d (2.10)

then for almost every smooth observation G, the delay
coordinate map yt 7�! (xt; xt�1; : : : ; xt��+1) is

(i) One-to-one on Y ;

(ii) An immersion on each compact subset of a smooth
manifold contained in Y , provided that several
regularity conditions are met on periodic points.

Since yt 7�! (xt; xt�1; : : : ; xt��+1) is one-to-one
(for almost every G), delay coordinate system su�ces
for prediction purposes. Positive Lyapunov exponents
can be computed since unstable manifold is preserved.
Note, however, that the result is for noiseless dynam-
ics. Note also that (2.10) is a su�cient condition so
that � � 2d may \work".

Decomposition (2.5) of weight parameters and as-
sociated decomposition (2.6) of hyperparameters are
important. Typically a subvector wc consists of those
weights between each input variable to feedforward neu-
ral net and hidden units so that dim wc = h, the num-
ber of hidden units. Another typical wc0 consists of the
biases for hidden units, and �nally the bias for output
unit together with the weights between hidden units
and the output. Thus a typical dimension of � is �+2,
where � is the hypothesized order of the Markov pro-
cess.

1Let N(") be the number of K-cubes needed to cover Y . Box
counting dimension of Y is given by

d := lim
"!0

logN(")

log 1

"

provided it exists which can be non-integer.



3. PREDICTIONS

Fact 3.1 (Level 1: Posterior for w)

The posterior of w given (D;�; �;H) is

P (w j D;�; �;H) =

exp(�M(w;�;�))
ZD(�)ZW (�)

P (D j �; �;H)
(3.1)

M(w;�; �) := �ED(w) +
CX
c=1

�cEWc
(wc) (3.2)

and hence the most probable w, called wMP, is given
by

wMP = argmin
w

M(w;�; �) (3.3)

Fact 3.2 (Level 2: Posterior for (�; �))

If P (�; � j H) is independent and at, then the
most probable hyperparameters are given by

(�MP; �MP) = argmax
�;�

P (D j �; �;H) (3.4)

so that the following gradient information can be used
for �nding (�MP; �MP):

@

@�
logP (D j �; �;H)

� �ED(wMP)�
1

2
TrA�1BD �

@

@�
logZD(�)

(3.5)

where A is the Hessian of M evaluated at wMP, Tr
stands for a trace of a matrix, ED is de�ned by (2.2)
and BD is the Hessian of ED at wMP.

@

@�c
logP (D j �; �;H)

� �EWc(wcMP)�
@

@�c
logZW (�)�

1

2
TrA�1BC

(3.6)

where BC is the Hessian of EWc at wMP.

Fact 3.3 (Level 3: Posterior for H (model compari-
son))

If P (H) is at, then the most probable model is
given by

HMP = argmax
H

P (D j H) (3.7)

Fact 3.4 (Predictive Distribution)

P (fxtg
T
N+1 j D) =

X
H

Z Z Z
P (fxtg

T
N+1 j w; �;H)

�P (w;�; �;H j D)dwd�d� (3.8)

If P (fxtg
T
N+1 j w; �MP;H) �

Y
t

1

ZD(�MP)

� exp

�
�
�MP
2

(xt+1 � f(xt; : : : ; xt��+1;wMP)

�
@f

@w

T

(w �wMP))
2

)
(3.9)

P (w j D;�; �;H) �
1

(2�)h=2 detA�1=2

� exp

�
�
1

2
(w �wMP)

TA(w �wMP)

�
(3.10)

then the predictive mean xt;MP is given by

xt+1;MP = f(xt;MP; : : : ; xt��+1;MP;wMP) ;

N � t � T � 1 : (3.11)

Log marginal likelihood �2 logP (D j �; �;H) is
sometimes called ABIC [2] or evidence for hyperpa-
rameters [3], and marginal likelihood at the next hi-
erarchy P (D j H) is sometimes called evidence for
model [3]. The quantity proposed in [2], �2 logP (D j
�; �;H)+2dim(�; �) is di�erent from�2 logP (D j H),
however.

4. DEMONSTRATIONS

4.1. Chaotic Time Series

Consider the R�ossler System8<
:

_x = �y � z
_y = x+ ay
_z = bx� cz + xz

(4.1)

with (a; b; c) = (0:36; 0:4; 4:5) (Fig. 3.1).
Consider8<

:
_x = �y � z + �1t
_y = x+ ay + �2t
_z = bx � cz + xz + �3t

(4.2)

where �1t , �
2
t , �

3
t are noise processes. To avoid technical

di�culties associated with stochastic process with con-
tinuous parameters, let us consider the discrete version
of (4.2):8<

:
x(t+1)� = f(xt�; yt�; zt�) + �1t�
y(t+1)� = g(xt�; yt�; zt�) + �2t�
z(t+1)� = h(xt�; yt�; zt�) + �3t�

(4.3)

where f(�), g(�), h(�) represent a numerical integration
scheme , e.g., Runge-Kutta, with step size �, and �it� �
i :i :d : N(0; �2); i = 1; 2; 3.



Let fxt�gt�0 be the observation. There are two pa-
rameters to be estimated. One is the sampling period
�, i.e., how often xt� should be sampled. Another is
the embedding dimension �(see (Fact 2.1)). There are
several di�erent algorithms for each of them. One of
our main purposes in this paper is to estimate � so
that we assume that � is already estimated. Figure.4.2
shows (xt��; x(t�1)��; x(t�2)��) with � = 0:01, � = 50,
and � = 0:02, t = 0; :::; 499. This data was used as
the training data set and the scheme described in the
previous section was applied.

Figure.4.3 shows logP (D j �MP; �MP;H) against
(�; h). The model with the highest marginal likelihood
was selected (� = 4; h = 5), and used for prediction.

Figure 4.4 shows prediction capability of the learned
system where the initial condition was not in the train-
ing data. These �gures indicate that the present ap-
proach may give rise to a new means for inferring em-
bedding dimension of a chaotic attractor when system
noise is present.

4.2. Air-conditioning Load Prediction

Saving energy and reduction of CO2 emissions are
becoming critical for conservation of global and re-
gional environments. The cost of electricity during
night hours is typically much less than that of the day-
time. Therefore, in electrically operated HVAC (Heat-
ing, Ventilation, and Air-Conditioning) systems, intro-
duction of thermal energy storage systems can help
level o� electricity demand throughout the day and
thus increase the overall operation e�ciency of the power
plants run by utility companies. Very good prediction
algorithms are needed for predicting air-conditioning
loads in order to decide the amount ice to be produced.

\The First International Benchmark Test of Air-
con- ditioning Load Prediction Methods for Optimum
Operation of Thermal Energy Storage Systems" was or-
ganized by SHASE (Society of Heating, Air-conditioning,
and Sanitary Engineers in Japan) [7] which we partic-
ipated.

Problem B:

Let data set D :=
�
fxtgNt=0 ; futg

N
t=0

�
� IR �

IRm be given, where ut are the inputs and xt is
the output. Given additional input data futgTt=N+1,
predict fxtg

T
t=N+1 .

The air-conditioning load prediction problem be-
longs to Problem B where ut represent meteological
data including temperature, humidity, windspeed, so-
lar ux, and so on, and xt is the total load at time t.
Five variables are estimated to be signi�cant and our
architecture is described by Figure 4.5 where ut, time

stands for a function which only depends on time.

Figure 4.6 shows logP (D j �MP; �MP;H) against h,
the number of hidden units. Multiple plots are due
to local optima. The model with the highest P (D j
�MP; �MP;H)(h = 5) was used for prediction. Fig-
ure 4.7 shows our predictions together with the actual
data released after the competition. Our result was �rst
among the seventeen participating groups with respect
to squared error. Details can be found in [7].

5. CONCLUSION

A hierarchical Bayesian algorithm was proposed and
applied to two classes of nonlinear time series predic-
tion problems. The scheme infers a nonlinear dynami-
cal system model using neural nets.
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Figure 4.1: R�ossler system
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Figure 4.3:
logP (D j �MP; �MP;H) vs. (�; h)
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Figure 4.5: Architecture of nonlinear
dynamical system for predictions
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Figure 4.6:
logP (D j �MP; �MP;H) vs. h
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Fiure 4.7: Our predictions compared with measured data
which was disclosed after the competition.


