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ABSTRACT

An attempt is made to solve two classes of nonlin-
ear time series prediction problems with a hierarchical
Bayes Approach using neural nets.

1. INTRODUCTION

When nonlinearity is involved, time series predic-
tion becomes a rather difficult task where the conven-
tional linear methods have limited successes for various
reasons.

One of the greatest challenges stems from the fact
that typical observation data is a scalar time series so
that dimension of the nonlinear dynamical system (em-
bedding dimension) is unknown.

This paper proposes a Hierarchical Bayesian ap-
proach to nonlinear time series prediction problems.
This class of schemes considers a famaly of prior dis-
tributions parameterized by hyperparameters instead
of a single prior so that it enables algorithms less de-
pendent on a particular prior. One can estimate pos-
terior of weight parameters, hyperparameters and em-
bedding dimension by marginalization with respect to
the weight parameters and hyperparameters.

The proposed scheme is tested against two exam-
ples;

(i) chaotic time series, and

(ii) building air-conditioning load prediction.

2. FORMULATION
Problem A:
Given data set D := {z,}Y, c R ,
{l't};‘,r:NH .
Hypothesis H

predict

Hypothesis or model consists of the following:

(1) Architecture:
e.g., three-layer perceptron with » hidden units
and a particular sigmoid function.

(i) Likelihood:
P ({wt};\;'r’ {wT—la (KR ;L‘[)} | w, B’H)
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where f(-) is neural net output, w € RF the
weight parameters of a particular architecture,
S (unknown) uncertainty level, Zp(3) the nor-
malization constant, and 7 is embedding dimen-
ston (the order of the dynamics) which is un-
known. Equation(2.1) looks at {x¢} as a 7-th o1-
der Markov process whose state transition prob-
ability density is given by the first factor whereas
the second factor is the initial state probability
density.

(iii) Prior for w:
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where w is decomposed into groups:
w = (wy,...,we), W E R*-, (2.5)
a = (a,...,ac), a, €R (2.6)

exp(—a.Ew, (w.))/Zw (a.) represents the prior
belief on how w, should be distributed with (un-
known) a, and Zy (a.) is the normalization con-
stant.



(iv) Prior for (e, ), hyperparameters: P(a, | H)

(v) Prior for H: P(H)

The goal of the prediction problem is to compute
the predictive distribution(density) P({x;}/_y,, | D)
under (1) (v). This paper first computes three levels
of posterior distributions as shown in Fig. 2.1 and use
them to compute the predictive distribution.

Level 1

P(D | w, 3. H) P(w | a,H)

P(w|D,e,8,H) = P(D [, 3. H)

Level 2
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Level 3
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Figure 2.1: Hierarchical Bayesian Structure

The most difficult parameter to be estimated is 7,
the embedding dimension. In order to explain this, let
us first consider the linear dynamical system

v, =Gy, el
(2.7)
e., GT represents a linear observation, T being matrix
transpose. One can show that generically, that there is
a nonsingular matrix ® such that

Y1 = Fy,, Yy, € IRK7

(l'ta Lp—Tyee- a«’Et—K+1) = dy,

so that the K-dimensional delay coordinate system x; =
(24,24-1,...,24_Kxy41) preserves various properties of
(2.7). Well known AR model is described by

K-1

Typy = Z Wik—; +v (2.8)
i=0

wlhere v is a noise process. Note that (2.1) contaiuns
(2.8) as a special case where
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Since AR model demands {w; } be (asymptotically)
stable, the origin is the only meaningful invariant set.
In contrast, nonlinear dynamical system

F(yt)a Y, € R* (2-9)

can naturally admit non-trivial stable periodic orbits,
invariant closed curves and even chaotic attractors which
typically have Cantor structure. Let ¥ C IR® be an
invariant set and let z; = G(y,), 21 € R be obser-
vation. Determining the number of delay coordinates
(v, @0-1,. ., ¥—r+1) Is non-trivial. The following is
due to Sauer and others [1].

Y1 =

Fact 2.1 Let the invariant set }” be a compact subset
of an open set U ¢ RY, with box counting dimen-

siond!.If

7> 2d (2.10)

then for almost every smooth observation G, the delay
coordinate map Y, —— (g, Ty—1y..., Tymrp1) 18

(i) One-to-one on Y;

(ii) Animmersion on each compact subset of a smooth
manifold contained in Y, provided that several
regularity conditions are met on periodic points.

Since y, +— (w4 #4-1,...,Ti—r41) IS one-to-one
(for almost every G), delay coordinate system suffices
for prediction purposes. Positive Lyapunov exponents
can be computed since unstable manifold is preserved.
Note, however, that the result is for noiseless dynam-
ics. Note also that (2.10) is a sufficient condition so
that 7 < 2d may “work”.

Decomposition (2.5) of weight parameters and as-
sociated decomposition (2.6) of hyperparameters are
important. Typically a subvector w,. consists of those
weights between each input variable to feedforward neu-
ral net and hidden units so that dim w. = h, the num-
ber of hidden units. Another typical w. consists of the
biases for hidden units, and finally the bias for output
unit together with the weights between hidden units
and the output. Thus a typical dimension of o is 7+ 2,
where 7 is the hypothesized order of the Markov pro-

Cess.
ILet N(£) be the number of K-cubes needed to cover Y. Box
counting dimension of Y is given by

log N(e
d:= lim 08 EC)
e—0 log <

provided it exists which can be non-integer.



3. PREDICTIONS

Fact 3.1 (Level 1: Posterior for w)
The posterior of w given (D, a, 3, H) is
exp(—M((W;,3))

p Zp(B)Zw ()
P Do, H) =——7"—"++ 3.1
(w|D,e,5,4) P(D|a,B,H) (3:1)
C

M(w: o, 3) = BEp(w) + > a.Bw.(w.) (3.2)

c=1

and hence the most probable w, called wy;p, is given
by

Wyp =

argmui}n M(w; a, §) (3.3)

Fact 3.2 (Level 2: Posterior for (a, 3))

If Pla,8 | H) is independent and flat, then the
most probable hyperparameters are given by

(aMP7ﬁMP) = dlgl&ng(D | a, 3, H) (34)

so that the following gradient information can be used
for finding (otue, fur):

% log P(D | a0, 3, H)

) 1 _ 0
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where A is the Hessian of M evaluated at wyp, Tr

stands for a trace of a matrix, Ep is defined by (2.2)
and B, is the Hessian of F;, at wyp.

9 log P(D | o, 3, H)

o 1 _
~—Ey (Weyp) — alog Zw(a) — §TrA 'Bo
(3.6)

where B is the Hessian of Eyy, at wyp.

Fact 3.3 (Level 3: Posterior for H (model compari-
son))

If P(H) is flat, then the most probable model is
given hy

Hyp = arg max P(D | 'H) (3.7)

Fact 3.4 (Predictive Distribution)
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then the predictive mean x; v, is given by

Plw | D,a,0,H) =~

. n$t7T+1,Ml”7le—’) s
N<t<T—1.
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(3.11)

Log marginal likelihood —2log P(D | o, 3,’H) is
sometimes called ABIC [2] or evidence for hyperpa-
rameters [3], and marginal likelihood at the next hi-
erarchy P(D | H) is sometimes called evidence for
model [3]. The quantity proposed in [2], —2log P(D |
a, 3, H)+2 dim(e, 3) is different from —21og P(D | H),
however.

4. DEMONSTRATIONS

4.1. Chaotic Time Series
Consider the Rossler System
i o=

Yy =
: =

—y—=z
x4+ ay (4.1)
br —cz+ w2z

with (a, b,¢) = (0.36,0.4,4.5) (Fig. 3.1).

Consider
P = —y—z4+v}
§j = rtay+v] (4.2)
P o= br—cztaz+uv

where v/}, v2, v} are noise processes. To avoid technical
difficulties associated with stochastic process with con-
tinuous parameters, let us consider the discrete version

of (4.2):

Tagns = [, Y5, 216) + V¢16
Y+ne = 9(Tis, Yiss Zté) + Vl,zé (4.3)
zaanys = (@i, yiss 2s) + v

where f(-), g(+), I(-) represent a numerical integration
scheme , e.g., Runge-Kutta, with step size ¢, and v;; ~

ivi.d. N(0,02),i=1,2,3.



Let {wl,ﬁ},,zg be the observation. There are two pa-
rameters to be estimated. One is the sampling period
7, i.e., how often z;s should be sampled. Another is
the embedding dimension 7(see (Fact 2.1)). There are
several different algorithms for each of them. One of
our main purposes in this paper is to estimate 7 so
that we assume that 7 is already estimated. Figure.4.2
shows (a:t,gn,m(t,l)én,m(t,g)m) with 6 = 0.01, n = 50,
and ¢ = 0.02, t = 0,...,499. This data was used as
the training data set and the scheme described in the
previous section was applied.

Figure.4.3 shows log P(D | ayp, dye,H) against
(7, h). The model with the highest marginal likelihood
was selected (7 =4, h = 35), and used for prediction.

Figure 4.4 shows prediction capability of the learned
system where the initial condition was not in the train-
ing data. These figures indicate that the present ap-
proach may give rise to a new means for inferring em-
bedding dimension of a chaotic attractor when system
noise is present.

4.2. Air-conditioning Load Prediction

Saving energy and reduction of COy emissions are
becoming critical for conservation of global and re-
gional environments. The cost of electricity during
night hours is typically much less than that of the day-
time. Therefore, in electrically operated HVAC (Heat-
ing, Ventilation, and Air-Counditioning) systems, intro-
duction of thermal energy storage systems can help
level off electricity demand throughout the day and
thus increase the overall operation efficiency of the power
plants run by utility companies. Very good prediction
algorithms are needed for predicting air-conditioning
loads in order to decide the amount ice to be produced.

“The First International Benchmark Test of Air-
con- ditioning Load Prediction Methods for Optimum
Operation of Thermal Energy Storage Systems” was or-
ganized by SHASE (Society of Heating, Air-conditioning,
and Sanitary Engineers in Japan) [7] which we partic-
ipated.

Problem B:
Let data set D := ({w}i%, . {u}ir,) C Rx
IR™ be given, where u; are the inputs and x; is

the output. Given additional input data {w,}{_ v, 1,

predict {2¢}{_ .y -

The air-conditioning load prediction problem be-
longs to Problem B where u; represent meteological
data including temperature, humidity, windspeed, so-
lar flux, and so on, and z; is the total load at time t.
Five variables are estimated to be significant and our
architecture is described by Figure4.5 where u; time
stands for a function which only depends on time.

Figure 4.6 shows log P(D | otye, Bup, H) against h,
the number of hidden units. Multiple plots are due
to local optima. The model with the highest P(D |
e, Jup, H)(h = 5) was used for prediction. Fig-
ure 4.7 shows our predictions together with the actual
data released after the competition. Our result was first
among the seventeen participating groups with respect
to squared error. Details can be found in [7].

5. CONCLUSION

A hierarchical Bayesian algorithm was proposed and
applied to two classes of nonlinear time series predic-
tion problems. The scheme infers a nonlinear dynami-
cal system model using neural nets.
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Figure 4.2 Training data:

Figure 4.1: Rossler system (5 115 T(t—2)51)
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Figure 4.5: Architecture of nonlinear

[keal /h]

Total Load

dynamical system for predictions

600000 — 77— 600000

predicted —
predicted —
neasur ed -

500000 4 500000

400000 400000

[keal /h]

300000 300000 .

200000 200000

Total Load

100000 100000

0

}ia%ssh °

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1906

1 7 8 o
August, 1996 August

(a) From August 1 to August 15 (b) From August 16 to August 31

Fiure 4.7: Our predictions compared with measured data
which was disclosed after the competition.



