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ABSTRACT

A new class of nonlinear Filters called Vector Median
Rational Hybrid Filter (VMRHF) [1][2] has been re-
cently introduced and applied to colour image �ltering
problems. As shown in these papers, hybrid �lters ex-
hibit very desirable �ltering features which often out-
perform those of the components of the hybrid �lter
itself. The VMRHF �lter is a two-stage �lter, which
exploits the features of the vector-median �lter and
those of the rational operator. The performances of
the proposed �lter are compared with those of the Vec-
tor Median Filter (VMF), described in [3], and of the
Directional-Distance Filter (DDF), reported in [4]. In
this paper we also present a hardware implementation
of the VMRHF which exploits in an e�ective way the
features and the robustness of both median �lters and
rational �lters. This architecture is suitable for the use
in real-time applications due to its reduced hardware
complexity.

1. MEDIAN-RATIONAL HYBRID FILTERS

The Vector Median Rational Filter is de�ned as fol-
lows:

De�nition 1.1 the output vector y(fi) of the VMRHF,
is the result of a vector rational function taking into
account three input sub-functions which form an input
function set f�
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where � = [�1; �2; �3] characterizes the constant vector
coe�cient of the input sub-functions and k � k2 is the
L2-vector norm.

In this approach, we have chosen a very simple pro-
totype �lter coe�cients which satisfy the condition:P

3

i=1�i = 0. In our study, � = [1;�2; 1]T. h and k
are some positive constants. The parameter k is used
to control the amount of the nonlinear e�ect.

The sub-�lters �1 and �3 are chosen so that an ac-
ceptable compromise between noise reduction and edge
and chromaticity preservation can be achieved. In this
speci�c case both these sub-�lters are bidirectional vec-
tor median �lters. The former acts on a plus-shaped
mask, the latter on a cross-shaped one.

The central term is a Center Weighted Vector Me-
dian Filter (CWVMF) acting on a plus-shaped mask.

Since the VMF as described in [3] is derived as a
maximum likelihood estimates for the exponential dis-
tribution, it performs very well when the noise follows a
long-tailed distribution. On the other side the rational
operator exhibits good �ltering capabilities in case of
Gaussian noise. Therefore we expected the hybrid �l-
ter to perform well in both cases and the experimental
results con�rm this claim.

2. IMPLEMENTATION

The implementation of the VMRHF is rather compli-
cated due to the amount of calculations required from
both the vector median �lters and the rational func-
tion.

The main driving constraints of this implementa-
tion are the chip size and the speed of the circuitry,
in order to obtain a real time system which could be
implemented on an FPGA for testing purposes.

In order to achieve a high throughput we used a
pipelined structure, inspite of the number of memory
units required by this kind of architecture. Therefore
the design of the implemented system is a compromise
between size and speed to �t in FPGA's.

Since implementations of the median �lter are widely



reported in literature, in this work we mainly focus on
the problems introduced by the rational function. In
this Section we discuss our choices for the implementa-
tion of this operator.

As it can be seen from (1), the used function is
very simple. The amount of hardware required for an
accurate implementation is quite large though. This
fact is due to the use of the L2 norm, which requires
the computation of the function

y =
p
(�11 ��31)2 + (�12 � �32)2 + (�13 � �33)2

and to the division required by the rational function.
Previous works [5] on rational functions show that

these operators are very robust with respect to errors
in the calculation of both numerator and denominator.
Thus we can exploit this feature in order to reduce the
complexity of the system itself.

The �rst approximation we introduce is on the com-
putation of k �

1
� �

3
k2 by mean of a simple linear

function:
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where c = 1; 3
4
; 2 depending if respectively two, one

or none of the addends are equal to 0. This is a coarse
approximation which allows us to still have a good es-
timate for the L2 value, but which is much simpler to
implement.

The second approximation has been introduced in
order to simplify the evaluation of the division. Before
explaining the approximation itself, we need to consider
the features of the speci�c rational function used. In
(1) the parameters h and k are user-speci�ed depending
on the application. For our purposes we can rewrite the
former equation for the i-th component in the following
way:

yi = k1
�1i + �3i � 2�2i

w+ k �
1
� �

3
k2

(3)

with

k1 = 1=k w = h=k:

Following the example in [6] the values of k1 and w
have been chosen as 100 and 625, respectively.

The values of the median operators are bounded to
be in the interval [0,255], thus the numerator �1i+�3i�
2�2i can assume only values in the range [-510,510]. On
the other side, the use of (2) leads us to bound the value
of the denominator in the range [625,1008].

The key point of our approximation is the use of
a scale-down-by-16 algorithm, which is equivalent to
a simple binary shift and thus it doesn't require any
hardware. If we want to round o� the obtained value,
then we need an extra adder, but this time the number
of bits involved is smaller.

The previous observations allow us to say that for
the denominator we need always two scale-down steps
in order to bound its value in the range [0,16]. More-
over, the e�ect of the scaling by 16 is to further restrict
this range to [2,4], and this will be very useful when
performing the division.
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Figure 1: Structure of the rational function for the i-th
component.

The number nc of scale steps required for the nu-
merator is variable between 0 and 2, but again the ob-
tained value n is bounded in the interval [0,16]. After
the scalings we can rewrite (3) as follows:

yi = k1
n16nc

d162
= k1

n

d
16nc�2 (4)

A further simpli�cation can be done if we slightly mod-
ify the value of k1 (and consequently that of w) so that
we obtain a multiple of 16. In this speci�c case we
choose k1 = 96 = 6 � 16 and w = 600 = 6:25 � 96.
We can exploit this particular choice for the parame-
ters observing that d can be only 2,3 or 4 and therefore
the ratio k1=d can assume only the values 3� 16 ; 2�
16 ; 3

2
� 16 and the expression (4) becomes

yi =
p� n� 16nc�1

q
(5)

with

p �f2; 3g q �f1; 2g (nc� 1) �f�1; 0;+1g:



Using this approximationwe can reduce the division
to a sequence of binary shifts and sums for the round
o�s.

In Figure 1 we show a schematic representation of
our implementation for the i-th component. The 5-bit
adders include the shift by 16 and a demultiplexer in
the case of the numerator.

3. RESULTS

The implemented system has been tested using colour
images in 8-bit RGB format corrupted by adding simple
impulsive, simple Gaussian or contaminated Gaussian
noise.
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Figure 2: Comparative results between Vector Median
Hybrid Filter (VMRHF), Vector Median Filter (VMF)
and Directional-Distance Filter (DDF).

The test set for the comparisons with the mentioned
VMF and DDF includes 16 test images with pure im-
pulsive noise with percentage � from 0.5 to 4, 16 images
corrupted with Gaussian noise with �2 ranging from
50 to 400 and 16 images corrupted with contaminated
Gaussian. In Figure 2 we report some comparative re-
sults for the proposed algorithm VMRHF with respect
to the Vector Median Filter (VMF) and the Direction-
Distance Filter (DDF) for the case � = 4%.

The commonmeasures MSE and MAE used to com-
pare the output image of a �lter with the original one
are not very appropriate to quantify the perceptual er-
ror between images. Experimental and comparative
results in colour image �ltering show that a very good
performance measure can be obtained when the error

is measured in the L�a�b� space. L�a�b� is known as
a space where equal colour di�erences result in equal
distances, and thus it is close to the human percep-
tion of colors. Therefore, in all our tests in addition
to the MAE and MSE measures we used a normalized
colour di�erence (NCD) [7], computed according to the
following formula:

NCD =

PM

i=1

PN

j=1 k4ELabk
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i=1

PN

j=1 kE
�

Labk
(6)

where 4ELab is the perceptual colour error between
two colour vectors and E�

Lab is the magnitude of the
original image pixel vector in the L�a�b� space.
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Figure 3: Comparative results between the theoretical
VMRHF and the implementation.

As it can be seen from Figure 2, the proposed �lter
outperforms the other �lters for all the performance
measures.

We used the same test sets to compare the perfor-
mances of the ideal VMRHF algorithm and those of the
implemented system. The results are shown in Figure
3, and partially reported in Table 1, as performance
measures with respect to the original images. In this
�gure we plot the results obtained for all the 16 im-
ages in the case of ideal VMRHF (marked with 'o')
with respect to those obtained in the case of the imple-
mented system (marked with '*'). We can see that in
all the cases the implemented system outperforms the
ideal one. This fact may be considered quite surprising
according to the approximations we introduced.

An explanation of this behavior can be obtained
looking at the comparison between the approximated
and the ideal division, reported in Figure 4. The curves
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Figure 4: Comparative results between the approxi-
mated and the ideal division.

shown are relative to the division

k1 � n

w + fa

for n �f0; 510g and fa = 0, but the results are the
same for the other values of fa.

We can see that the approximated algorithm out-
puts values higher than the ideal division, and that
the di�erences increase as the numerator n increases.
When the noise is high the values of the three median
�lters are very di�erent and likely the numerator in (1)
becomes large in absolute value. The output of the ra-
tional function modi�es �2, the output of the central
weighted median �lter, which is assumed as a good es-
timate for the actual value of the central pixel in the
mask. Since the output of the approximated division
is generally higher than that of the ideal division, �2

is modi�ed more than in the ideal case and this causes
a better �ltering. This fact is essentially demonstrated
by simulations done with the ideal function. From the
data shown in Figure 3 a ratio of about 1.2 has been
found between the outputs of the approximated divi-
sion and those of the ideal one. If we modify k1 in (1)
so that k�

1
= 1:2 � k1 = 115, the results of the ideal

function become very close to those of our implementa-
tion. The slightly di�erences still existing between the
two sets of data are probabily due to the saturation
e�ect of the approximation, which prevents a too large
modi�cation of �2 when the rational function outputs
a large value.

Noise MAE MSE NCD

� = 1 Noisy image 55.7 2142 0.31698
�2 = 100 Hardware 50.9 1576 0.31789

Theoretical 51.4 1602 0.32071
� = 1 Noisy image 60.8 2433 0.34662

�2 = 200 Hardware 53.7 1725 0.33320
Theoretical 54.4 1768 0.33752

� = 1 Noisy image 65.1 2689 0.37124
�2 = 300 Hardware 56.1 1857 0.34542

Theoretical 57.0 1910 0.35049
� = 1 Noisy image 69.2 2969 0.39830

�2 = 400 Hardware 58.5 2010 0.35964
Theoretical 59.4 2066 0.36504

� = 4 Noisy image 61.7 3231 0.35492
�2 = 100 Hardware 51.6 1648 0.32170

Theoretical 52.1 1682 0.32476
� = 4 Noisy image 66.4 3478 0.38296

�2 = 200 Hardware 54.2 1792 0.33723
Theoretical 55.0 1840 0.34192

� = 4 Noisy image 70.6 3739 0.40706
�2 = 300 Hardware 56.8 1941 0.35133

Theoretical 57.7 1997 0.35664
� = 4 Noisy image 74.6 3986 0.43186

�2 = 400 Hardware 59.4 2101 0.36502
Theoretical 60.3 2157 0.37040

Table 1: Quantitative comparison between theoretical
algorithm and implemented system.

As it can be seen from Figure 1 the structure of the
rational function is very simple: it requires only adders
and a few extra circuitries for signal conditioning, like
demultiplexers. Therefore it is very suitable for an
implementation with FPGA. In fact the FPGA's usu-
ally support optimized macros for conventional binary
adders, but they don't allow to handle very well general
datapath structures like user-speci�ed boolean func-
tions. Therefore a design with only adders and mul-
tiplexers can be e�ectively implemented on FPGA and
relatively high speed can be achieved even with low-
performance devices. Moreover the small amount of
blocks required by our proposed implementationmakes
a pipelined architecture easy to implement, allowing a
high throughput. For instance, if we choose the 8-bit
adder as a reference for the speed, a clock up 40 MHz
can be obtained with a small-size FPGA, correspond-
ing to 40 millions of output RGB vectors per second
using the pipeline architecture.



4. CONCLUSIONS

In this paper we present a new class of nonlinear �lters
which are able to remove di�erent kinds of additive
i.i.d. noise. Moreover, we present a hardware imple-
mentation for such operators. Our tests have shown
that the implemented system is very robust and that
the relative small dimensions of its structure make it
very suitable for direct implementations on FPGA's.
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