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ABSTRACT

In this paper, we propose a new class of multichan-
nel filters called adaptive fuzzy hybrid multichannel
(AFHM) filters to achieve noise attenuation, chro-
maticity retention, and edges or details preservation
simultaneously. Our novel approach mainly based on
human concept ( heuristic rules) provides a significant
framework for taking the merits of filtering behaviors
of three filters, a vector median (VM) filter, a vector
directional (VD) filter, and an identity filter [1, 2].

1. INTRODUCTION

Recently, vector-processing approach is effectively ex-
ploited in the multichannel signal processing due to
the consideration of channel dependence. One class
of order statistics (OS) multichannel image filters is
based on reduced sub-ordering (R-ordering) scheme to
obtain order statistics on observed vector-valued sam-
ples [3]. Two famous examples, VM and VD filters,
have been proposed by [1] and [2], respectively. VM
filters are effective in noise attenuation in contrast to
the V D filters which are effective in chromaticity reten-
tion. Hence, another class of multichannel filters was
proposed by combining the characteristics of V M and
VD filters, such as distance and directional (DD), and
adaptive nearest neighbor multichannel (ANNM) fil-
ters [4, 5]. However, these filters are difficult to possess
the capabilities of noise attenuation, chromaticity re-
tention, and details preservation simultaneously. This
motivates us to develop AFH M filters based on fuzzy
techniques and learning algorithms such that they can
further improve the filtering performance of conven-
tional multichannel filters.

2. BASIC CONCEPTS

2.1. Ranking Vector-Valued Data

A digital multichannel image Z with size L x K is repre-
sented by 7 = [x;;]Lxx where x;; € {0,1,2,---,255}"™.
In this paper, x;; is called the vector-valued pixel lo-
cated at position (4, j) in Z. Note that m = 3 when
the digital multichannel image is an RGB color im-
age. Hereafter, m = 3 in this paper, unless other-
wise stated. In addition, a filter window with size
N = (2r +1)? (N is odd, in general) covers on the
image 7 at position (7, j) to obtain an observed sam-

ple matrix X;; (or filter window content) defined by
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X; = X0 = (xg>,xg>, o xD) ...,ng_l,xgg)
where 1 < i < Land 1 < j < K. In addition, x.”
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= [a, wgi o) w wgl, o) € (0,1, -, 255),
1 <k < N and T denotes the matrix transpose.

The ordering of xgl), xg), -+, and xg\l,) based on
R-ordering scheme is according to distance criteria or

functions. An aggregated distance corresponding to
xY can be defined by dV = Z;\;l p (xz(-l), x(-l)) where

% % 7
p:{0,1, -+, 255} x {0, 1, ---, 255} — R is a dis-
tance function. For instance, p can be one of Minkowski
metrics defined by
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or be the vector angle distance defined by
(GRINO)
ORGAN Xi %
plx;’, x;’) = arccos . (2
)\ T

Note that (1) is called Block (L1 norm), Euclidean (Lo

norm) and Max (Le norm) distances while p = 1, 2,
O]

and oo, respectively [2, 5]. Thus, each x; is reduced
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Figure 1: The structure of an AFH M filter.
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to a scalar d;’ through the mapping of aggregated dis-

tances. Let dgl), dél),- - d%) be sorted in ascending
order to become

d(l) < d(l) <...< dE%) (3)

On the basis of the total ordering of real numbers, (3)

defines a R-ordering of xgl), xg), -+, and Xg\l,) , that is,

0 O 0
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2.2. Review of VM and VD Filters

First, the design of VM filters is based on the aggre-
gated Euclidean distance to select a minimal entry from
the observed sample matrix X® [1]. Let Fy s be the
window operator associated with a VM filter, which
is defined by wa = Fyuy (X(l)) = XE%. Then, the
design of VD filters is based on the aggregated vec-
tor angle distance. One class of V' D filters called basic
vector directional (BV D) filters is to select a minimal
entry from the observed sample matrix X [2]. Let
Fpyvp be the window operator associated with a BV D
filter, which is defined by x{3}, , = Fpyp (X)) = x}).
3. THE DESIGN OF AFHM FILTERS

The structure of an AF HM filter is illustrated in Fig-
ure 1. The structure of AFHM filters is composed
of three principal components: an HM filter, a fuzzy
rule-based system (FRBS), and a learning algorithm.

3.1. HM Filters

The structure of an HM filter comprises four basic
components: BV DF, VMF, IF and a summation
combinator. BVDF ,VMF, and I F stand for a BV D,
a VM and an identity filters, respectively. The sum-
mation combinator is represented by > .

Definition 1 Let Fyps be the window operator asso-
ciated with an HM filter. The output of the HM filter
is defined by

Frn gx(n; o, g0y =50 = (1 — o) g0
! ! 1
XSBVD +(1-89) ng)M + O‘(l)ﬁmxé)

where oV, 30 €0, 1]. xél) denotes the central vector-
valued pizel of a filter window when the filter window
covers on an image at position (1) (ie., at (i, j)).
xg)‘/D, xg)M, and X? are the outputs of a BVD, aV M,
and an identity filters, respectively. The output of the

T
HM filter is denoted as §(l> = [@@, §§”, @il) , and
:'/J\S"l); ?/J\él)f @\(El) € {0; 1: ] 255} u

Two control values, o) and %), decide the coef-
ficients within (4) to adapt the window content X,
The HM filter is called the AFHM filter when oY) and
BW are decided by fuzzy techniques and learning algo-
rithms. In this paper, one of the main contributions
is to apply an FRBS and a gradient-descent learning
algorithm for adjusting these two control values such
that the AFHM filters can adapt the distinct window
contents. Before we state the design of the FRBS and
the learning algorithm to decide a'¥) and %), we give
some deterministic properties of HM filters for deeply
understanding the behavior of HM filters.

Property 1: HM filters are invariant under scaling.

Property 2: HM filters are invariant under rotation
when p is the Ly norm on the design of VM filters.

Property 3: Suppose that o¥) # 1 and ) £ 1. An
input image 7 is a root of the HM filter of length
N if and only if the central vector-valued pixel of
the window Xél) is a convex combination of x%}v D

0] 0]

and xy/,, that is, xg) = xg)‘/D + (1= A%y
1—a®)g®
where \ = %

3.2. The Design Motivation of AFHM Filters

According to human concept, four cases are considered

on the design of AFHM filters. Let d@M and dg)v D

denote the aggregated distances corresponding to X&?M

and X%)VD, respectively. In addition, let dg)VM and

d?BVD denote the aggregated distances correspond-

ing to xél) based on p defined by (1) and (2), respec-

tively. Then, we define vV = ‘dg)M — dél)v | and o®

{ {
- dsa)VD - dé’,)BVD"



In the first case, when u¥) is large and v® is
large, this indicates that the possibility of that xél)
is corrupted should be very high. The behavior
of the AFHM filter is emphasized to inherit the
noise-attenuation and chromaticity-retention capabil-
ities from the VM and the BV D filters, respectively.
Therefore, from Figure 1, this kind of behavior can be
decided by o) and SO, in (4). That is, oV and g
should be low to result in that the coefficient associated
with xg) approaches to zero.

In the second case, when u{®) is small and v is large,

this indicates that xg) is regarded as an uncorrupt vec-

tor by the V M filter, whereas xg) is regarded as a cor-
rupted vector by the BV D filter. This occurs a con-
flict whether x? is corrupted or not. In this case, for
the sake of details preservation, the possibility of con-
tributing Xg)v p to the output of the AFH M should be
low. Therefore, the behavior of the AF H M filter is em-
phasized to inherit the noise-attenuation and details-
preservation capabilities from the V M and the identity
filters, respectively. Consequently, in (1), oY should
be high and 3% should be low to result in that the
coefficient associated with Xg)v 1 approaches to zero.
In the third case, v(v%len u® is large and v® is small,
l

this indicates that X¢ is regarded as a corrupted vec-

tor by the VM filter, whereas xg) is regarded as an
uncorrupted vector by the BV D filter. This also oc-
curs a conflict which is a converse case with respect to
the second case. For the sake of details preservation,
the possibility of contributing X&Q]VI to the output of the
AF H M should be low. The behavior of the AF H M fil-
ter is emphasized to inherit the chromaticity-retention
and details-preservation capabilities of the BV D and
the identity filters, respectively. Consequently, in (1),
a® should be low and 8Y) should be high to result in
that the coefficient associated with X&?M approaches to
Zero.

In the fourth case, when u® is small and v is small,
this indicates that the possibility of that two median
vectors outputted by the VM and the BV D filters are
X? should be very high. For the reason of details
preservation, the possibility of reducing the output of
the AFHM filter to be x{" should be very high. In this
case, the output of the AF H M filter achieves three ob-
jectives simultaneously. So, in (1), a® and 3 should
be very high to result in that the coefficients associated
with xg)M and Xg)v p approach to zero.

From above scenario, the behavior of the AFHM
filter is heavily controlled by oY and #%). The func-
tions of a® and B, however, are highly nonlinear and
are difficult to be precisely represented by convectional

mathematical models. In this paper, we propose an
FRBS and a learning algorithm to adjust oY and g®
such that AF HM filters are capable of taking the mer-
its of the behavior of a VM, a BV D, and an identity
filters for achieving these three objectives.

3.3. The Design of the FRBS

An FRBS consists of a set of fuzzy rules represented

in IF-then format [6]. According to human con-

cept stated in Subsection 3.2, the behavior of the

AFHM filter can be described by means of four fuzzy

Rl: If u® is large and v is large, then
a® is low and Y is low

R2:  If u® is small and v is large, then
a® is high and W is low

R3: If u® is large and v is small, then
a® is low and BY is high

R4:  If u® is small and v is small,

a® is very high and W is very high.

rules:

where, u¥ and v are two linguistic variables, and
five linguistic terms, small, large, high, low, very high
can be expressed by fuzzy sets with 1-D shape member-
ship functions such as bell-shape 1-D functions. Conse-
quently, two 2-D continuous functions, for instance, in
Figure 2, to decide a¥) and 3% can be obtained if these
four fuzzy rules are merged [7]. These two 2-D func-
tions can be viewed as the membership functions of a9
and AU, In most fuzzy rule-based systems with fuzzy
inference techniques, these two 2-D membership func-
tions are obtained by merging 1-D membership func-
tions of linguistic terms, small and large, and their
fuzzy relations to oY and 8¢) [6]. However, in some
applications such as the field of signal processing, it
is difficult to obtain these two membership functions
accurately. The problem can be circumvented via us-
ing approximated functions which can be obtained by
a learning approach [7].

3.4. Learning Algorithm

The 1-D nonlinear continuous membership function can
be approximated by a 1-D step-shape function. Hence,
the 2-D continuous membership functions can be ap-
proximated by 2-D step-shape functions which com-
prises a finite number of piecewise regions, such as Fig-
ure 3(a) and (b). These two 2-D step-shape functions
are the membership functions to characterize o) and
B, respectively. Let the heights of region (p,q) in
these two 2-D step-shape functions be oy, and G, 4,
respectively. Therefore, the values of o, ; and 3, , can
be trained by the least mean squared (LMS) algorithm
which is subject to minimize the cost function (or error



Figure 2: (a) an example of the shape of linguistic vari-
able a¥); (b) an example of the shape of linguistic vari-
able 0.

surface) e, 4 with respect to region (p, q) [9]:
1 1 %
on =52 [ll] =5 [y =5[] )

where e represents the estimated-error vector, VI €
Spig = {7: (M (u(j)) , ho (v(j))) = (p.q)}, and E de-
notes the statistical expectation operator. Moreover,
y® is the desired pixel and ¥ is the output pixel
of the AFHM filter. Let 1 < n < |S, | where |S, |
denotes the cardinality of the index set S, ,. In (5),
oy 4 and B, 4 constitute the error surface €, ,. On the
basis of the gradient-decent method, o, , and (3, , can
be adjusted in an iterative fashion along with the er-
ror surface toward the optimum solution. Then, the
updated rules of o, ; and 3, 4 can be, respectively, ob-
tained as:

Qpg(n+1) = g (n) + 1p.q(n) o
Boalr) (v~ 59)" (4 =)

and

Bpg (n+1) = Bp g (n) + 1p,q(n) (y(l> - y(”) 7)
! l l !
X X & o) (0 x0)]

where 7, , denotes the learning-rate parameter asso-
ciated with region (p,q) [9]. Consequently, the func-
tion values of all piecewise regions can be obtained
via the training process. For instance, the two mem-
bership functions of linguistic variables ) and g®
represented by 2-D step-shape functions are depicted
in Figure 3(a) and (b), respectively. For example,
p = 4 denotes 0.3 < ul) < 04, and ¢ = 6 denotes
0.5 < v < 0.6. Hence, o) is ayg = 0.978 and B
is Ba,6 = 0.295. Finally, we investigate the convergence
property of the learning algorithm mentioned above.

Property 4: Let the Ith training pattern (X®,y®)
belong to region (p, q), and [ be the nth element of

Figure 3: (a) and (b) are two 2-D step-shape member-
ship functions to characterize linguistic variables a/(%)
and BY, respectively.

Sp,q- That is, on the basis of pattern-by-pattern
fashion (X, y®) is regarded as the nth training
pattern associated with region (p, ¢). According to
updated rules (6) and (7), the learning algorithm
converges with respect to region (p, q) if 1, 4 (n) is
chosen as

2
l l
Np,q (n) =10/ <‘ XSB)VD - Xg/)MH +

N ®
030 )+ 55 0] [ x|

where 7y is the initial value of learning-rate pa-
rameter, and 0 < 7y < 1. Note that using the
similar way we can prove that this learning algo-
rithm converges with respect to other regions.

4. SIMULATION RESULTS

In this simulation, a number of RGB color images with
size 480 x 512 are examined, which include Tree, Pep-
pers, Lenna and Baboon images. The artificial addi-
tive noises are generated in the corrupted process. In
addition, a kind of channel dependence is simulated
by correlation coefficients prg, pap, and pgr which
are 0.5 in this simulation. Two measures are used
to assess the filtering performance. The first mea-
sure is the normalized mean squared error (NMSE)
which is a standard quantitative measure: NMSE =
Sl

=1

2 el

original and the estimated image vector-valued pixels,
respectively. Another measure is the mean color dif-
ference (MCD) which is based on the L*a*b* space:
MCD = 2 B -] @ and RO

= =7 where h'*) and h'" are the
points in the L*a*b* space corresponding to y) and
y®, respectively [2, 5. MCD indicates the error of
color images in human perception. The comparisons

where y( and y® represent the




of filtered results are shown in Tables 1 and 2. Let
AFHMyg, AFHMy, AFHMp and AF H M, represent
an AF H M filter individually trained by Baboon, Tree,
Peppers, and Lenna images in advance, respectively.
Obviously, the filtering performance of AFHM filters
is better than that of other simulated filters under con-
sideration. One of methods for assessing details pre-
serving is to compare the filtering results of the noise-
free (0%) original images. To observe Tables 1 and 2,
the details-preserving capability of AF' H M filters is su-
perior to that of simulated filters under consideration.
In order to assess the robust capability the training
and testing images should be different [7, 9]. In this
simulation, the training images include Tree, Peppers
and Lenna images with the same probability of impul-
sive noises as Baboon image. Table 3 illustrates that
AFHM filters also possess the robust capability.

5. CONCLUSIONS

A novel class of nonlinear multichannel filters called
AFHM filters has been proposed in this paper. On
the design of AF HM filters, human concept has been
efficiently expressed by fuzzy rules to decide control
values. Moreover, a faster learning algorithm based on
the LMS algorithm are employed to improve the filter-
ing performance and to enhance the robust capability
of AFHM filters. Finally, the simulation results illus-
trate that AF HM filters possess not only the capabil-
ities of noise attenuation, chromaticity retention, and
edges or details preservation but also the capabilities
of the robustness and adaptation.

6. REFERENCES

[1] J. Astola, P. Haavisto and Y. Neuvo, “Vector me-
dian filtering,” IEEE Proc., vol. 78, no. 4, pp. 678-
689, Apr. 1990.

[2] P. E. Trahanias, D. Karakos and A. N. Venet-
sanopoulos, “Directional processing of color images:
theory and experimental results,” IEEFE Trans. Im-
age Processing, vol. 5, no. 6, pp. 868-880, Jun. 1996.

[3] V. Barnett, “The ordering of multivariate data,” J.
Royal Stat. Soc. A, vol. 139, part 3, pp. 318-343,
1976.

[4] D. Karakos and P. E. Trahanias, “Generalized mul-
tichannel image-filtering structures,” IFEE Tran.

Image processing, vol. 6, no. 7, pp. 1038-1045, Jul.
1997.

filters 0% 4% 6% 10%
VM 296 3.12 3.34 3.70
BV D 5.44 544 5.65 6.05
DD 297 3.07 3.26 3.56
ANNM 278 285 3.07 3.38
AFHMg 002 0.85 192 245

Table 1: NMSE (x1072) result for for Baboon image
corrupted by impulsive noises.

filters 0% 4% 6% 10%
VM 25.47 2719 29.16 31.66
BV D 2491 25.13 26.23 27.78
DD 24.50 25.08 26.70 28.69
ANNM 2361 2456 27.26 30.33
AFHMg 091 8.47 20.72 25.54

Table 2: MCD result for Baboon image corrupted by
impulsive noises.

[5] K. N. Plataniotis, V. Sri, D. Androutsos and A.
N. Venetsanopoulos, “An adaptive nearest neigh-
bor multichannel filters,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 6, No. 6, pp.
699-703, Dec. 1996.

[6] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic
Theory and Applications. Upper Saddle River, NJ:
Prentice-Hall, 1995.

[7] K. Arakawa, “Median filters based on fuzzy rules
and its application to image processing,” Fuzzy Sets
and Systems, vol. 77, pp. 3-13, 1996.

[8] K. Tang, J. Astola, and Y. Neuvo, “Nonlinear mul-
tivariate images filtering techniques,” IEEE Trans.

Image Processing, vol. 4, no. 6, pp. 788-798, Jun.
1995.

[9] S. Haykin, Neural networks. New York: Macmillan
College Publishing Company, 1995.

Baboon (6%)

AFHMy AFHM,, AFHDMp
NMSE 2.639 2.645 2.721
MCD 20.23 21.03 20.89

Table 3: Filtered results to robust capability for
AFHM filters.



