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ABSTRACT

In science and engineering, models of real systems are
constructed to identify underlying mechanisms and properties,
to make predictions or to control their behavior.  In the
majority of cases, the system to be modeled is based on abstract
concepts, on parameters difficult or impossible to precisely
quantize, and on experiments limited by technology or the
system itself. Due to the unavoidable presence of uncertainty
and the usual need to simplify the system and reduce its
computational complexity prior to modeling, engineers need to
make reasonable assumptions based on their knowledge of the
system dynamics. The fuzzy percolation model presented here
is an extension to the percolation model (crisp model)
introduced in [3]. Both models were built using the tools and
concepts of complexity theory by mapping the reticular
activating system (RAS) in the brain into a percolation network
whose nodes represent a non-specific area of the central
nervous system (CNS). To construct the percolation model,
data from neuroscience, medical science and aviation medicine
were used to determine the local node parameters. Both models
utilize the same structure, parameters and variables to represent
the cardiovascular and nervous systems; the crisp percolation
model makes reasonable assumptions about not well known
parameters without taking into account the inherent uncertainty
and unavoidable imprecision in their representation. In this
article, we show how this uncertainty can be modeled using
fuzzy systems. We then test the model and compare its
performance to the crisp model using human data. Since both,
crisp and fuzzy models were able to duplicate human studies
with a high degree of fidelity, we conclude that a precise
description of the parameters is not necessary when modeling a
complex system, provided the parameters remain within
physiologically reasonable bounds.

1. INTRODUCTION

During airplane maneuvers and centrifuge experiments,
pilots are exposed to high G forces that can overcome the
human cardiovascular system, decreasing the ability of the
heart to supply blood to the brain.  Inadequate supply of blood
may cause the pilot to experience neurologic and psychologic
symptoms such as loss of vision, loss of hearing, disorientation,
and acceleration (+Gz) induced Loss of Consciousness (G-
LOC). Modeling such a complex system as the human response
to high G-forces is a challenge.  A G-LOC model of the central
nervous system (CNS) that captures the global dynamics
leading to loss of consciousness under acceleration stress was
presented in [3]. This model was built using the tools and
concepts of complexity theory along with conventional
mathematics. Successful development of the model required

careful combination of basic knowledge of the p
system both at the local (microscopic) a n
(macroscopic) levels with experimental dat a
appropriate mathematical tools [4].  The local p a
model were derived from a wide range of human a
physiologic data. Although reasonable assumpt i
neural tissue under acceleration stress wer e
unavoidable uncertainty inherent in the represen
of the parameters were not taken into account w
decisions about the state of the local element.
following question: to what precision should th e
local dynamics be known? In this paper, this 
addressed by introducing imprecision and uncert a
crisp G-LOC model using the concepts and tool s
theory. In the next section, we provide the bac k
for the model development. Section III gives a n
the previous crisp G-LOC model. Section IV de s
construction of the fuzzy model. We then co m
predictions of the two models with respect to h u
indicate the future extensions of this work.

2. FOUNDATION TOPICS

2.1 Complexity

In complex systems, spatial and temporal glo b
is produced through the rich interactions among 
of local subsystems. Modeling such complex syste m
challenge. Complexity theories draw their pow e
recognition that the behavior of a complex dy n
does not, in general, depend on the physical pa r
local elements but rather on how they interact 
globally observable behavior that emerges from t h
of the local dynamics [4]. This emergent globa l
appears without the need of a central controller 
top-down influence on the local elements [6].

The G-LOC model presented here views the 
nervous system (CNS) as a complex system whos
behavior is the transition from conscio u
unconsciousness.  This behavior can be describ e
(phase) transition which is defined as an abrupt 
the physical and/or dynamics states of a syste m
familiar examples of phase transitions are b
fundamental states of matter: gas, liquid, pla
Other examples of phase transitions are cha n
crystalline structure of matter, in the degree o f
the dynamics of the system. Determining the sta t
not always straightforward.  Sometimes the appa
matter changes when the scale of observation (
versus microscopic) is changed. This change of 
different scales is due to the spatial reno r



averaging that takes place over a specified range when multiple
elements are replaced with a single element [11].

Figure 1. Probability of Percolation (Infinite & Finite)

2.2 Percolation

Percolation networks are often used to model phase
transitions [14].  A percolation model is created by using a
simple regular geometric framework and by establishing simple
interaction rules among the elements on the grid.  Percolation
theory is based on infinite networks.  In site percolation, each
node in the grid has only two states, occupied or vacant (on or
off).  The nodes in the lattice are populated based on a uniform
probability distribution, independent of the state of any other
node.  Nodes that are neighbors on the grid link together to
form clusters. Clusters represent connections between nodes in
the lattice. Anything associated with the cluster can therefore
flow to any node that belongs to the cluster. The probability at
which the first spanning cluster appears is called critical
threshold.  Computer simulations of large but finite two
dimensional square networks have estimated that the critical
threshold for an infinite network is 0.593 (fig. 1). The G-LOC
model was modeled using a 20x20 percolation network to
model the connectivity in the CNS and the transition between
consciousness and unconsciousness.

2.3 Fuzzy Theory

Fuzzy theory attempts to describe realistic problems by
allowing elements to belong, and to not belong to a group or set
at the same time [16]. The two most important concepts of
fuzzy theory are the fuzzy set and the membership function.
These two concepts are similar and are used interchangeably.
A fuzzy set is a collection of elements without a crisp or a
clearly defined boundary distinguishing members and
nonmembers. The membership function, on the other hand, is
that function which indicates the degree of membership of an
element to a set, the fuzzy set. The shape of the membership
functions are arbitrary ranging from the simple straight line to
nonlinear membership functions.

Fuzzy numbers are fuzzy sets defined over the set of real
numbers [9]. A fuzzy system uses a collection of fuzzy
numbers and rules to reason about data and make decisions. A
fuzzy system consists of four parts [12]:
•  Fuzzy Rule Base: This part contains the fuzzy rules of the

system. Each rule has an antecedent (If part of the rule)
and consequent part (then part of the rule).

•  Fuzzification: In this part, the value for each input variable
is applied to the set of rules.  The antecedent of each rule

is computed to obtain a single number called 
support of the rule.  When a rule has a deg r
zero, this rule does not apply.  If the degre
say that the rule has fired, i.e. the rule is 

•  Inference: Consists of two parts: impli c
aggregation. On implication, the value from t h
degree of support is applied to the conse q
results in assigning for each rule a fuzz y
aggregation part, the fuzzy sets obtained f r
are combined to obtain a single fuzzy set f o
variable.

•  Defuzzification: In this part of the fuzz y
solution for each output variable is defuzz i
converted back to a classical number.

3. PREVIOUS MODEL OVERVIEW

+Gz - Induced Loss of Consciousness (G-LOC) i
as the condition that results when humans are e x
levels of acceleration stress (Gz  vector) during airpl a
maneuvers and centrifuge experiments.  After 
established a link between the loss of blo o
unconsciousness,  G-LOC was considered a consequ e
failure of the cardiovascular system to maintain 
flow to the central nervous system (CNS). The n e
of the problem was not introduced until 1989 [15 ]
suggests that unconsciousness is an active neuro l
mechanism triggered in response to a metabolic t
simply a passive response to ischemia. The fir
took into consideration the cardiovascular an d
mechanisms behind G-LOC was introduced in [2].  T
created using percolation theory, was able to 
global dynamics of the induction of unconsciousn e
due to cerebral ischemia.  The model mapped t h
activating system (RAS) into a percolation ne t
nodes represent a non-specific area of the CNS. T
neurologic system responsible for the all-or-no t
consciousness. The model is based on several hy p
some reasonable assumptions had to be made a
behavior of neural tissue under acceleration 
reasonable assumptions were associated with b
sensitivity to ischemia, and neural functional th r
The model views acceleration stress as the 
responsible for cerebral ischemia. When the b o
acceleration stress, the cardiovascular resp o
overcome the downward pressure to maintain the b l
the brain.  As acceleration increases, the abil i
supply adequate blow flow decreases.  When bloo d
hence the supply in oxygen and other substances )
system (neural cell) is halted, the oxygen re m
tissues decreases at a rate that depends on the 
needs.  If the oxygen concentration in the tis s
certain level (neuronal functional threshol d
(representing an area of the brain), is assume d
participate in the RAS and is removed from th e
network.  If the stress is severe enough, the n
removed increases.  This will break the com m
pathway between the top and bottom part of t h
resulting in the induction of unconsciousness a s
[2]. The bottom row corresponds to brainstem r
formation and, the top row, to higher cortical ar
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Figure 2. Mapping the RAS onto a percolation network

4. FUZZY MODEL CONSTRUCTION

Several changes were made to the crisp model in order to
account for the uncertainty present in its parameters. These
modifications are associated directly with the blood flow, or
equivalently, the oxygen delivery, the neuronal functional
threshold and the node state and, indirectly, with the metabolic
rate or the oxygen use.

Oxygen Delivery: In the crisp model, the extent of
ischemia for each of the nodes is determined by calculating the
blood flow, first, by determining the eye level blood pressure in
response to acceleration stress.  This is accomplished by using
an existing model developed by Gillingham [7]. Subsequently,
the calculated pressure is distributed throughout the percolation
network representing the cortex. Each node is assigned a local
hydrostatic barrier chosen from a series of uniform
distributions that span the brain stem to the higher cortex. In
the crisp model, the mean blood pressure for the individual is
compared with the local blood pressure at the node.  The blood
flow at each node is then individually determined to be either
adequate (lower than the baseline, positive difference) or
ischemic (higher than the baseline, negative difference). In the
crisp case a drastic change occurs in blood flow from 100%
(adequate) to 0% (ischemic) at the moment the local
hydrostatic height exceeds the mean blood pressure at heart
level (fig. 4).

In the fuzzy model, the assumption of constant blood flow
is modified to account for the pulsatile blood flow that exists
for pressure values between the dyastolic and systolic
pressures.  For hydrostatic barriers less than the dyastolic
pressure, the blood flow is normal; for barriers above the
systolic pressure, blood flow is zero, and for barriers between
the two, blood flow is pulsatile. In order to characterize the
blood flow between these two extreme cases, the area above the
blood pressure pulse at each pressure is calculated and
compared to the mean area of the pulse (fig. 3).  The final result
is a smooth transition from adequate to ischemic blood flow.

Oxygen Use: As the neural tissue becomes ischemic, the
cells begin to use the available nutrients (oxygen) at a rate
determined by the local metabolic needs. Each node in the
network is assigned a local metabolic rate from a Gaussian
distribution whose mean represents a global metabolic rate.
The oxygen use curve is S-shaped and was determined based

on in-vivo measurements of ischemic retinal t
Ischemic nodes with higher metabolic rates w i
available oxygen at a faster rate than those rep r
the neural tissue with relatively low metabolic d
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Figure 4. Blood flow (Oxygen Delivery) vs. pres s

Neuronal Functional Suppression Threshold: Recognizing
that the CNS is not homogeneously sensitive to h
node is assigned a critical threshold from 
distribution. The value and distribution of 
suppression threshold is extracted from experime n
malfunction of neurons under ischemic conditio n
measured: electrical function is affected at app
of normal cerebral blood flow, complete neuron a
failure occurs around 30% and release of potas s
death at approximately 10% [1].  In the crisp m o
oxygen level in the node falls below the ass i
threshold (e.g. 30%), the node, representing an 
tissue, is suppressed (fig. 5).  This area is as s
participate in the RAS and the node is remov e
percolation network. This threshold, called lo
suppression threshold (LFT), indicates the end 
normal neuronal function for the particular are
i.e. the node no longer participates in the per c
The precise value of this threshold is not kno w
the uncertainty in determining the exact va l
thresholds and the fact that each node in the n e
not only one neuron, but a nonspecific area of 
instantaneous change from proper function to no n
exactly one instant in time is not justified.

Fuzzy Model Development: In order to accou n
uncertainty in the threshold, a fuzzy infere n
created. The fuzzy node is proposed as the i
relationship of this fuzzy inference system.
determine the node state for the corresponding ar

The intermediate states of the fuzzy node ac c
uncertainty in determining the functional state 
brain, where some neurons or structures are f u
others are not. A fuzzy node indicates a node w
state is continuous and not limited to the biva
crisp node.  In fact, for both models, the node 
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renormalization process for the state of an area of the brain.
Each node is viewed as a macroscopic representation of an area
which itself represents a group of smaller areas, which are also
representing a group of smaller areas in cascade down to the
neuronal level where, theoretically, each node represents the
state of a single neuron (fig. 2, 6).  Obviously, in practice, it is
not possible to represent each neuron or to know which neuron
is operational and contributes to the RAS.
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The fuzzy node therefore represents the state of areas at
lower scales through a cascade of percolation networks whose
final occupation probability value is given by the value of the
fuzzy node.  A value of ‘1’ means all the areas are operational,
a ‘0’ indicates that none are functional, while intermediary
values indicate that some parts are operational.  The value of
the fuzzy node is not static; it changes as the oxygen
concentration approaches the functional suppression threshold
and when this threshold is exceeded.  The range of oxygen
concentration values over which the fuzzy node varies is
referred to as the fuzzy threshold region (fig. 5).
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The fuzzy node, i.e. the input-output relationship of the fuzzy
system, depends on five parameters describing the triangular
and trapezoidal input (N1, N2) and output (Th1, Th, Th2)
membership functions (fig. 6). The value of these parameters
are not known a priori and must be determined. To do so, the
model was exercised with fuzzy nodes to study the effects of
the fuzzy system parameters (Table 1). The use of fuzzy nodes
results in a fuzzy percolation network. In contrast with the crisp
percolation network, where the binary nature of the nodes
clearly defines the clusters, in the fuzzy percolation network,
such definition does not exist.  In fact, there is no theory
dealing with a fuzzy percolation network. It is however
possible to converge to a decision using a rule which maps the
fuzzy percolation network onto a classic percolation network.
In conventional percolation theory, the probability of
percolation can be determined if the node occupation
probability is known. For an infinite network, if the occupation
probability is above the critical threshold, the probability of

percolation is 1, if it is below the criticalit y
percolation is 0 (fig. 1).  This is also the ru
fuzzy percolation network onto the classic netwo r
threshold for an infinite network is 0.593 [13] .
value to map the fuzzy percolation network to
network is justified by the proposition that 
percolation networks underlies each node (fig. 7)

Figure 7. Cascade of Percolation Networks

At each time increment, the fuzzy percolatio n
mapped to a classic network in order to determin e
cluster exists, i.e. if the network is percolat i
the individual is conscious. Otherwise, loss o f
results otherwise.

The effect of the fuzzy system parameters o n
where studied when blood flow to the node is ab
[13]. This condition was chosen to avoid contr i
other factors on the time to loss consciousne s
differential blood perfusion to the brain. T h
simulation showed that the time for a fuzzy node 
from the percolation network was almost the sa m
crisp case. The maximum time difference between t
and crisp case was 0.6 seconds. In modern centr
the recognition of unconsciousness by a central
been shown to have a variability of +/- 2 s
Therefore, the 0.6 seconds variation is wel l
measurement resolution for human experimen t
Montecarlo simulation uncovered the relationship
fuzzy system parameters, the fuzzy node, and the 
of a fuzzy node from the percolation network.  T
did not however determine the fuzzy threshold ra n
nor the values for the output parameters of the f u

In order to determine the fuzzy threshold ra n
neuronal ischemia study was used as reference 
tests were performed for which the input thresh o
of the fuzzy system were fixed to the Astrup ra n
Th2=40%) for all the nodes or were normally di
each node as determined by the local function
(LFT-0.2, LFT+0.1).  After several tests of t h
network, the final configuration was determined ( T

Table 1. Final Configuration for the Fuzzy N

 OUTPUT FUZZY PARAMETERS
N1 and N2 Uniform Distribution [0,1]

   INPUT FUZZY PARAMETERS
Threshold 1 = Th1 LFT –0.2
Threshold = Th = LFT Normal Distribution (0.3, 0.05)
Threshold 2 = Th2 LFT +0.1

Testing of the Model: The model was tested using 
same protocols as three of the historical human e
in the centrifuge (‘Acute Arrest’ [13], ‘Pens a
‘Beckman’ [2] studies). The ‘Acute Arrest’ study 



time to loss consciousness in humans when cerebral circulation
was abruptly halted. In the ‘Pensacola’ study, 1000 subjects
were exposed to the following acceleration stress protocol
under identical experimental conditions [5]: each individual
started at a 3.0 Gz peak held for 10 sec. If there were no visual
symptoms reported during the run, the peak G level for the next
exposure was increased by 0.5 Gz. If greyout or blackout did
occur, the peak Gz  of successive runs was increased by
increments of 0.3Gz until unconsciousness occurred. A chi-
squared test showed that for the ‘Acute Arrest’ and ‘Pensacola’
studies, the probabilities that the differences between the
models’ and the human experiment distributions are due to
random fluctuations are respectively, 90%, 80% (fuzzy) and
80%, 85% (crisp) (fig. 8, 9).

In the Beckman study [2], a set of profiles were developed
to analyze the loss of consciousness induction times associated
with very high onset rates to high levels of G z . The
experimental protocol starts with a rapid onset to peak G with
the duration at peak G set to zero seconds.  The peak G
duration was increased in 0.3 seconds steps until a loss of
consciousness occurred.  For the Beckman study, both models
show a good correlation to the human data, with R 2= 0.961
(fuzzy) and 0.954 (crisp).  These results show that both models
were able to duplicate human studies with a high degree of
fidelity.
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5. CONCLUSION

This article describes a fuzzy extension of a dynamic
percolation model, or crisp model, of the reticular activating
system under acceleration stress [3].  The percolation network
was used to represent the connectivity of the reticular activating
system (RAS) where each of the nodes represents a non-
specific area of the cephalic nervous system parameterized by
blood flow, sensitivity to ischemia and neuronal functional
threshold.  The bivalent characteristic of the oxygen delivery
(blood flow) and the node state functions in the previous crisp
model were changed to a continuous multivalent characteristic.
These modifications improved the previous model design by
introducing a more realistic blood flow dependence on the

hydrostatic pressure, and by accounting for t h
present on the node state when the oxygen conce n
approaches the local functional suppression thr
However, the addition of the fuzzy node did no t
significant difference in the global response ( T
the two models. We also postulate that the inter a
the local elements in the percolation network c a
small variations existing between the crisp an d
Both models replicated the human studies with a h
fidelity. Based on these observations, we propo s
knowledge of physiological parameters are not ne c
modeling a complex system, since slight variatio n
node dynamics do not significantly alter the glo b
is essential, however, to model the interplay a
elements [10].

6. REFERENCES

[1]Astrup J., Symon L, Branston NM and Lassen NA. 
Evoked Potential and Extracellular K + and H + at Crit i
Brain Ischemia. Stroke  8(1):51, 1977. [2] Beckman EL, Duane TD,
Ziegler JE and Hunter H. Some Observations on Human T o
Acceleration Stress. Aviat. Space. Environ. Med. 25:50-66, 1954. [3]
Cammarota J.P., A Dynamic Percolation Model of the ce n
System Under Acceleration Stress (+Gz) Induced Ische m
Stress.  Ph.D. Thesis, Drexel University, Philadelph i
Cammarota J.P. and Onaral B.,``State Transitions i n
Systems: A Complexity Model for Loss of Consciousn eIEEE
Transactions on Biomedical Engineering, 45(8):1017-1023,1998. [5 ]
Cochran LB, Gard PW and Norsworthy ME. Variations i n
Tolerance to Positive Acceleration. USNSAM NM  001 059.02.10:1-13,
1954. [6] Forrest S. Emergent Computation: Self-O r
Collective, and Cooperative Phenomena in Natural a n
Computing Networks. Physica D 42:1, 1990. [7] Gillingham K
Freeman J.J. and McNee R.C. Transfer Functions for Eye
Pressure During +Gz Stress. Aviat. Space Enviorn. Med. .48(11):1026,
1977 [8] Houghton J.O., McBride D.K. and Hannah K., ``
and Physiological Effects of Acceleration-Induced ( +
Consciousness'' Aviat. Space Environ. Med, 56:956, 1985. [9] Klir G.J.
and Yuan B., Fuzzy Sets and Fuzzy Logic, Theory and Appl .
New Jersey: Prentice-Hall, Inc., 1995 [10] Luzuriaga E., Fuzzy
Percolation Model for Loss of Consciousness Under A
Stress. Master Thesis, Drexel University, Philadelphi a
Onaral B. and Cammarota J.P.,``Complexity, Scaling, a n
Biomedical Signals.''in: CRC Handbook of Biomedical E,
J.Bronzino, Ed. Boca Raton, Fl: CRC, 933-944, 1995. [ 1 Roger J. J.
and Gulley N. Fuzzy Logic Toolbox, Massachusetts: The MathWork s
Inc., 1995. [13] Rossen R, Kabat R and Anderson JP. Acute A
the Cerebral Circulation in Man. Arch. Neurol. Psychiat. 50:510-528,
1943 [14] Stauffer D., Introduction to Percolation The o London:
Taylor \& Francis Ltd, 1985 [15] Whinnery, J.E. Observations o n
Neurophysiologic Theory of Acceleration (+Gz) Induc e
Consciousness. Aviat Space Environ Med. 60: 589, 1989. [16] Zadeh
L.A. A Fuzzy Set Interpretation of Linguistic H e
Cybernetics, 2(3):4, 1972. [17] Zuckerman R. Effects of B r
Mixtures on the Spatial and Temporal Distribution of O
of Retinal Tissues During Hypoxia/Ischemia. NAWCADWAR
0215:1, 1992.

Acknowledgements: Valuable contributions of Dr. Hreb i
H.H. Sun are gratefully acknowledged. This work has b e
in part by the ONR-NAWC


