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ABSTRACT

Based on stochastic calculus, we provide a rigorous formu-
lation for the numerical evaluation of the error probabilities
of two modulation techniques for the chaotic Lorenz com-
munication system with AWGN disturbance. These results
provide further understanding on the robust synchronization
ability of the Lorenz system to noise. The synchronization
robustness of Lorenz systems for various time scaling fac-
tors is also discussed. An approximate model of the vari-
ance of the sufficient statistic of the chaotic communication
is derived, which permits a comparison of the chaotic com-
munication system performance to a conventional commu-
nication system.

1. INTRODUCTION

Since Pecora and Carroll [1] have theoretically and experi-
mentally shown that two identical chaotic dynamic systems
can be synchronized, chaotic signals with inherently broad-
band, noise-like and unpredictable properties have been pro-
posed for possible communication modulation/codingwave-
forms [2][3]. A chaotic system possess self-synchronization
property if it can be decomposed into two subsystems: a
drive system and a conditionally stable response subsystem
that synchronize when driven with a common signal. Based
on the drive-response configuration of synchronization, spe-
cific chaotic communication techniques, such as chaotic sig-
nal masking, chaotic switching modulation [2][3][4], and
dynamic feedback modulation of information signal [5], have
been considered. As the basic operation of those techniques
is highly dependent on the self-synchronization property of
the chaotic systems, the robust ability of the systems to per-
turbation in the drive signal is a crucial factor in determining
the system performance. Since the AWGN channel consti-
tutes the most basic component of a communication link,
the understanding of the robust self-synchronization ability
of a chaotic communication system to WGN is necessary
for system design. However, because of the inherent non-

linearity of a chaotic system, it is generally difficult to ob-
tain an analytic solution and thus numerical simulations are
needed.

Cuomoet al [2] have addressed the numerical evalua-
tion of the SNR improvement of the Lorenz chaotic com-
munication system based on deterministic numerical algo-
rithms. It is known that commercial numerical computa-
tional packages using the standard Euler or Runge-Kutta(RK)
algorithms for deterministic differential equations to approx-
imate the solution to nonlinear stochastic differential equa-
tion(SDE) will incur significant errors [6]. This is partic-
ularly true for a nonlinear chaotic dynamical system mod-
eling the transmitter inputting into an AWGN channel and
followed by another nonlinear chaotic dynamical system.

In this paper, we use the stochastic calculus approach
to perform the integration algorithm for the sample func-
tions of nonlinear dynamic systems excited by the stochas-
tic white noise. Depending on the precise interpretation of
the white noise, there are two different solutions to the SDE
based on the Stratonovich or Ito integral [9]. Using the con-
version between them, a correct numerical integration algo-
rithm in the Ito sense is introduced. With this algorithm, the
correct error probability of the robust self-synchronization
Lorenz communication system with AWGN perturbation is
presented. The self-synchronization robustness of Lorenz
systems for various time scaling factors, changing the speed
of system evolution, is also discussed. Furthermore, we
explicitly demonstrate the performance evaluation of this
model using deterministic numerical algorithms yields in-
correct results. Finally, the numerical evaluation and com-
parison of error probabilities among dynamic feedback and
chaotic switching modulation for a Lorenz system and a
conventional communication system are provided.

2. PROBLEM DESCRIPTION

The modified Lorenz system [2] is given by

dx=d� = �(y(t)� x(t))



dy=d� = rx(t) � y(t)� 20x(t)z(t)

dz=d� = 5x(t)y(t)� bz(t); (1)

where�, r, andb are system parameters, and� = t=K; in
whichK is a time scaling factor. As shown in Pecora and
Carroll , and Cuomoet. al, two Lorenz systems in drive-
response structure, illustrated in Figure 1 , can be synchro-
nized in the absence of perturbation in the drive signal. To
characterize the robust ability of synchronization to white
noise, the modified Lorenz system can be interpreted as the
drive system, the signalv(t) is the received waveform at the
response system as defined by

dxr=d� = �(yr(t)� xr(t))

dyr=d� = rv(t) � yr(t)� 20v(t)zr(t)

dzr=d� = 5v(t)yr(t)� bzr(t); (2)

wherev(t) = x(t)+n(t); andn(t) is white Gaussian noise
with zero mean and power spectrum density�2n: The chosen
coefficients are� = 16; r = 45:6; andb = 4:
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Figure 1: Drive-response synchronization schematic dia-
gram.

We define the vectorX = [x; y; z; xr; yr; zr]
T : The en-

tire system composed of the drive subsystem and the re-
sponse subsystem can be viewed as a nonlinear system with
an external white noise input, and has the following stan-
dard form _Xi = fi(X)+gi(X)n(t); i = 1; 2; : : : ; 6;where
n(t) is the WGN with zero mean and unity variance. The
evolution of the above equation is then given by

Xi(t0+h) = Xi(t0)+

Z t0+h

t0

fi(X)dt+

Z t0+h

t0

gi(X)n(t)dt:

(3)
A commonly made mistake is to treat the third term of (3) as
deterministic ordinary calculus and apply the standard Euler
or RK integration algorithm. That is, ifgi(X) is smooth
function, the integration result can be approximated asZ t0+h

t0

gi(X)n(t)dt � gi(X(t0))Y1h; (4)

whereY1 is a Gaussian random variable with zero mean and
unity variance.

In order to illustrate this issue clearly, we use the above
algorithm to characterize the robust self-synchronizationabil-
ity of a Lorenz system by numerical computation. To com-
pare the results of Cuomo [2], the time scale of the Lorenz

system is taken with the factor ofK = 2505: The simu-
lation results are computed numerically for10 seconds and
the first few seconds of data are discarded to eliminate ini-
tial transient effects. The simulation results are shown in
Fig. 2, one of which is consistent with that in Cuomo,et al.
The definitions of the input SNR and output SNR quantities
in Fig. 2, are defined as

Input SNR = 10 log10(�
2
x=�

2
n)

Output SNR = 10 log10(�
2
x=�

2
e);

where�2x is the power of transmitted signalx(t); and�2e is
the power of the synchronization errore(t) = x(t)� xr(t):
Then the output SNR varies with the integration step size.
Furthermore, the output SNR decreases by3 dB as the step
size is doubled. This is not a reasonable consequence for a
given system which is excited by a stationary external white
noise.
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Figure 2: Synchronization performance using standard
Runge-Kutta method(K = 2505).

3. NUMERICAL ALGORITHM FOR SDE

For the above-described chaotic system, the corresponding
SDE in the sense of Ito is

dXi = fi(X)dt+ gi(X)dw(t); X(t0) = X0; (5)

wherew(t) is the one-dimensional Wiener process or Browian
motion, andX0 is initial conditions.

A simple and numerically realizable mean square ap-
proximation of the random variableX(t0 + T ) in Ito sense
is given by Milshtein [7]. Mannella and Palleschi [8] have
derived a more accurate integration algorithm in the sense of
Stratonovich [9], which treats the white noise as the limiting



behavior of bandlimited white noise, and the approximate
results are summarized as the following algorithm

Xi(h)�Xi(0) = �X
1=2
i +�X1

i +�X
3=2
i +�X2

i + : : : ; (6)

whereh is the integration step size, and

�X
1=2
i = gi

Z h

0

dw(t) =
p
hgiY1; (7)

whereY1 is a Gaussian random variable with zero mean
and unity variance, while the remaining terms are given in
equation(6) of [8].

According to Stratonovich [9], the integral in the sense
of Stratonovich can be converted into an Ito integral by adding
one correction term. That is, if the SDE is modified and is
given in the sense of Stratonovich as

dXi =

"
fi(X)� 1

2

X
J

@gi(X)

@XJ
gJ(X)

#
dt+ gi(X)dw(t);

(8)
the system evolution of equation(8) by using the above nu-
merical algorithm is statistically equivalent to the evolution
of equation(5) in the sense of Ito [10], which is desired here
because the stochastic termn(t) is true white noise. We use
this algorithm to re-simulate the robust self-synchronization
ability to white noise and the simulation results are shown
Fig. 3. Clearly, simulation results are consistent with differ-
ent integration step sizes, which is necessary consequence.
We also note that the robust self-synchronization ability of
the Lorenz system to white noise dropped dramatically com-
pared to Fig. 2.
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Figure 3: Synchronization performance using Ito / Mannella
and Palleschi method(K = 2505).

According to Cuomoet al.[2], the time scaling factorK
in the Lorenz system equation is used to speed up the evolu-
tion of the Lorenz system. That is, the Lorenz system with a

time scaling factor greater than one will synchronize within
the shorter transient period, which is needed in practical
high-speed communication systems. This technique is use-
ful if synchronization between drive and response systems
is still preserved. In fact, however, this time scaling factor
will enhance the noise effect on synchronization. To see this
effect, we provide the robust self-synchronization ability for
the Lorenz system with time scaling factorsK = 100; 25;
and1; as shown in Figure 4. The simulation results are com-
puted for30; 100; and 1000 seconds and the first15; 30;
and 100 seconds of transient data are discarded, respec-
tively. It is clear that synchronization performance degrades
by 10 log10K dB as the time scaling factorK is used, and
this results in shorter transient period.
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Figure 4: Synchronization performance for various time
scaling factors using Ito / Mannella and Palleschi method

4. CHAOTIC COMMUNICATIONS

Two popular communication techniques, chaotic signal mask-
ing and chaotic switching modulation(CSM) have been pro-
posed by [2] and [3] independently. The improved masking
algorithm by Milanovic [5], which is called dynamic feed-
back modulation(DFM), has been shown theoretically more
robust than the chaotic masking scheme. However, quan-
titative comparison among those methods in the sense of
digital communication performance have not been seen. In
this paper, we present the DFM and CSM communication
systems performance.

4.1. Chaotic Switching Modulation

The basic idea of a CSM communication system, shown
in Figure 5, is to encode the binary datam(t) with differ-



ent chaotic attractors by modulating the transmitter param-
eters and to transmits chaotic drive signalxm(t). At the
receiver, the parameter modulation will produce a synchro-
nization error between the received drive signal and the re-
generated drive signal with an error amplitude that depends
on the modulation. Using the synchronization error, the bi-
nary data can be detected.
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Figure 5: Chaotic switching modulation communication
system.

To be specific, the parameterb of the transmitter is mod-
ulated by the binary datam(t): The synchronization error
es(t) is defined as the difference between noisy received
signalr(t) = xm(t)+n(t) and the regenerated signalxr(t)
at the receiver. For this binary hypothesis problem, the suf-
ficient statistic�s is the power of the synchronization error
signal after discarding some transient data and is defined by

�s =
1

T

Z t0+T

t0

e2s(t)dt: (9)

4.2. Dynamic Feedback Modulation

In the DFM communication system shown in Figure 6, the
transmitted signalv(t) = x(t) +m(t); the combination of
information signalm(t) and chaotic signalx(t); is commu-
nicated to the receiver which is identical to the chaotic trans-
mitter. Since the reconstructed signalxr(t) will be identical
to x(t) in the absence of noisen(t); the information signal
m(t) can be decoded from the received signal by using

m̂(t) = x(t) +m(t)� xr(t): (10)

This analog communication technique can be applied to the
binary data communication by settingm(t) = A if the bi-
nary information data is one, andm(t) = �A if the binary
data is zero. The sufficient statistic�d of detection is the av-
erage of the error signal at the receiver after discarding the
initial transient period of synchronization, and is given as

�d = 1=T

Z t0+T

t0

ed(t)dt; (11)

where the error signaled(t) is defined ased(t) = v(t) +
n(t)�xr(t): Since the feedback information will affect the
chaotic property, the information levelA should be chosen
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Figure 6: Dynamic feedback modulation communication
system.

carefully to make transmitter still chaotic to maintain the
communication security.

Two set of parametersP1 = f� = 16; r = 45:6; b = 4g;
andP

�1 = f� = 16; r = 45:6; b = 5g are used for the
CSM communication system at the transmitter while the re-
ceiver uses theP1 parameter set of [2]. For the DFM com-
munication system, information levelA = 0:2 is chosen.
Simulation results of error probabilities of these two chaotic
communication systems are shown in Fig. 7. It is clear that
DFM is better than CSM because the error probability of
0:5 for CSM with SNRs below60dB is expected from Fig.
3.
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Figure 7: Chaotic communication system performance for
DFM and CSM (K = 2505).

Note that the definition of SNR in Fig. 7 is different
from the usual one used by the communication community.
For the DFM chaotic communication system, in addition
to the channel white noise, synchronization errors between
the transmitter and receiver also cause errors in detection.
Moreover, we found that the variance of�d can be approxi-
mately modeled by

var(�d) = c(N0)N0=2T = c(N0)var(�BPAM ) (12)

if T > �c; where�c = 0:1ms is the correlation time of syn-
chronization error with time scaling factorK = 2505, and



c(N0) is shown in Fig. 8. With this approximate model, we
can estimate the bit error probability of the DFM communi-
cation system using

Pe = Q
�p

2Em=c(N0)N0

�
; (13)

whereEm is the energy of the information signalm(t): The
results are shown in Fig. 7 as dashed lines, which are con-
sistent with the brute force simulation results.
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Figure 8: Coefficientc(N0):

To compare fairly with the BPAM communication sys-
tem, we need to exclude the effect of synchronization er-
ror as much as possible in evaluating the bit error probabil-
ity of the DFM communication system. From Fig. 8, we
know thatc(N0) = 5:5 is independent of the channel noise
strength if the input SNR is greater than62dB, which means
the bit error probability depends only on the ratioEb=N0 if
the observation periodT > �c; whereEb is the energy of
the transmitted signal. Therefore, the DFM communication
performance is worse than BPAM by

10 log10(5:5(Px + Pm)=Pm) = 23:5dB (14)

in the usual SNR definition, wherePx = 1:6 andPm =
0:04 are the average powers of the chaotic signalx(t) and
information signalm(t); respectively.

5. CONCLUSION

We have provided a rigorous formulation for numerical eval-
uation of error probabilities of two modulation techniques
for chaotic Lorenz communication system with AWGN dis-
turbance. Based on analysis of self-synchronization errors,
an approximate model of the variance of sufficient statistic
of chaotic communication is derived, which permits an es-
timation of the chaotic communication system performance
and a comparison to a conventional communication system.
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