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ABSTRACT

This paper presents a method for the classification of
nonlinear systems through the study of the free oscillations
in the time-frequency plane, when the measured data are af-
fected by fractal noise of the Wiener type. Nonconservative
SDOF (Single Degree Of Freedom) oscillators described by
a nonlinear second order differential equation are consid-
ered. The nonlinearity is due to a nonlinear function of the
state variable, which produces free oscillations with a time-
variant spectrum. The method used for the classification is
a substantial modification of a basic algorithm proposed by
the same authors for noise-free data. In presence of frac-
tal noise improved performances are obtained with the new
algorithm.

1. INTRODUCTION

This paper deals with the problem of classifying nonlinear
systems described by a nonlinear differential equation

�u(t) + c _u(t) + f(u(t)) = 0 (1)

wherec is a small positive parameter, calleddamping fac-
tor, andf(u) is a function of the state variableu identifying
the type of nonlinearity. The class of systems described by
(1) is calledSDOF (Single Degree Of Freedom), because
a single one-dimensional state variable is present in the dif-
ferential equation, andnonconservative, because of the pos-
itive dampingc, which causes the signalu(t) to decay. A
classical SDOF nonconservative system is the nonlinear os-
cillator.

Equation (1) is used as a fundamental model in many
areas of science, and the study of its properties constitutes a
subject of undoubted interest. In particular in identification
problems (for example in structural diagnostic), the inter-
est is often in the classification of the type of nonlinearity.
In literature this problem is studied with methods based on
the analytic signal [3], inverse Volterra-Wiener series [8],
Higher Order Spectra (HOS) [7]. In [4] a completely new
approach has been proposed, based on the identification of

the nonlinear functionf(u) (from now on, calledthe non-
linearity) through the signalu(t) represented in the Time-
Frequency plane. In this plane, as explained in Sect. 2.1,
the nature of thefree oscillationsgenerated by the system,
set up with initial conditions not too far from equilibrium
(weak nonlinearity), can be easily observed. In fact, as it is
well known from the theory of the nonlinear oscillations [6],
the signalu(t) produced in this situation is generally com-
posed of a time-variant fundamental frequency plus a set of
time-variant higher harmonics. The time evolution and the
energy of both fundamental and harmonics depend on the
type of nonlinearity.

The method proposed in [4] is very efficient when data
are noise-free. In this paper a modified algorithm is pro-
posed, able to overcome the performance degradation due
to the presence of fractal noise in the measured data.

Simulation results prove the validity of the method.

2. NONLINEAR OSCILLATORS

The nonlinearity in (1) is due to the functionf(u). Only
whenf(u) = ku the system becomes linear, and (1) be-
comes the representative equation of the well known har-
monic oscillator. In this case an exponentially damped si-
nusoid, with frequencyf0, is produced by the system, when
set up with some initial valuesu(0), _u(0). The generated
signal is often referred to as free oscillation or oscillation,
with frequencyf0 independent from the amplitude of the
oscillation.

In a nonlinear oscillator the frequency of the oscillation
depends on the signal amplitude, and therefore it can vary
according to the amplitude variations. Moreover the sig-
nal u(t) looses its exact sinusoidal behavior, and it will be
composed by a fundamental frequency plus a set of higher
harmonics.

The nonlinearities considered in this paper are indicated
in Table 1. They are particularly interesting in structural di-
agnostic, where they describe the typical nonlinear behavior
of beams under dynamic loading.



Table 1: Nonlinearity Class. In row C isk2 < k1, while in
row D isk1 > k2
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2.1. Time-Frequency Representation of the Free Oscil-
lations

The Time-Frequency Distributions (TFD) are a powerful
tool for the representation and the analysis of signals with
time-varying spectra, [2]. Each TFD is defined as a two-
dimensional transformation (from theTime domain to the
Time-Frequencydomain); a TFD, applied to a generic sig-
nalx(t), produces a two-dimensional functionDx(t; f), de-
fined in a plane, known as TF (Time-Frequency) plane.

The time variation of both the fundamental and the higher
harmonics of the free oscillations are well represented in
the TF plane. For what concerns the method proposed in
this paper, the key point of this signal representation is the

fact that all the useful information for the algorithm can be
extracted from the TF plane.

2.2. Instantaneous Frequency

A crucial point of the analysis based on TFDs is the pos-
sibility of associating aninstantaneous frequencyfi(t) to
a generic signalx(t), defined as the average frequency of
x(t) at a particular time. It is well known [2], that the in-
stantaneous frequency obtained with the Wigner Distribu-
tion (WD) exhibits a “physical” meaning in terms of har-
monic decomposition of a signalx(t). For this reason the
Wigner distribution will be used for characterising the time
variation of the fundamental in our application.

3. DESCRIPTION OF THE CLASSIFICATION
METHOD

The classification method proposed in this paper is based
(as the basic algorithm in [4]) on the assumption that the
time variation of the fundamental, denoted asf0(t), may
be a discriminating element among different nonlinearities.
The method is performed in three steps.

Estimation in the TF Plane. An estimatef̂0(t) of the fun-
damental frequency, based on the instantaneous fre-
quency introduced in Sect. 2.2, is first accomplished.
In [4] this has been done using theWD (Wigner Dis-
tribution) peak detection algorithm[1]. This algo-
rithm simply evaluates the maximum of the Wigner
Distribution at every time instant: this value is proved
to be a good estimate of the instantaneous frequency.
The WD peak method works well when applied on
one-component signals with high SNR, but unfortu-
nately it has very low performances when noise in-
creases. In this paper the signal has been corrupted
with additive fractal noise. In particular a Wiener
process with power spectrum1=f2 numerically gen-
erated has been added to(u(t). In Fig. 1, the Wigner
Distribution of the noisy signal is shown, withSNR =
�1:5dB (evaluated over the whole band of interest).
Several comments can be done looking at this Time-
Frequency Representation. First it is possible to rec-
ognize that the fundamental frequency associated to
the free oscillation starts int = 0 at the valuef = 2:5
Hz and moves toward higher frequencies. Second it
can be seen that the energy concentration around the
zero frequency is due to the Wiener process added to
the signal. Third it can be noticed the presence of os-
cillating energy concentration localized between the
fundamental and the zero frequency. This is the in-
terference term produced by the Wigner Distribution
when applied to a signal made of two principal com-
ponents. Due to the presence of the fractal noise and
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Figure 1: Wigner Distribution of the signalu(t) added with
fractal noise

of the interference terms it is not possible to apply di-
rectly the WD peak algorithm to estimatêf0(t). The
problem of the fractal noise can be solved with a dig-
ital highpass filtering, able to cut off the lowest fre-
quencies in the spectrum, and hence in the TF plane.
The great localization of the Wiener spectrum around
the zero frequency makes this operation very effec-
tive. But the highpass filtering solves also the inter-
ference term problem: now, in fact, the filtered signal
turns out to be one-component, and the interference
term produced by the WD vanishes. Notice that a
zero-phase distortion filtering has been used with a
Butterworth highpass digital filter. In Fig. 2 the WD
of the filtered signal is shown. Now the signal can
be considered one-component with a good approxi-
mation, and it is possible to apply on it the WD peak
detection algorithm, leading to the estimatef̂0(t)..

Analytical Approximation. The second step of the method
consists in producing an alternative expression~f0(t)
of the fundamental related to the system parameters.
Two approximations are necessary to obtain this ex-
pression.

� Conservative Approximation.The nonconser-
vative system described by (1), in the case of a
weak nonlinearity, can be considered as locally
conservative (c = 0), and then described by the
equation

�u(t) + f(u(t)) = 0 (2)

valid in a short time interval. The oscillation
u(t)will be periodic, but not sinusoidal [6]. There-
fore it will be composed by a fundamental fre-
quency and a number of harmonics. Because of
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Figure 2: Wigner Distribution of the signal after the high-
pass filtering

the nonlinearity the fundamental frequency will
be a function of its amplitudea.

An analytical approximation~f0;A of the funda-
mental can be obtained from (2) through the use
of techniques, known in nonlinear analysis, as
Perturbation Methods[5]. The approximations
for the nonlinearities of Table 1 can be found in
[4].

In general~f0;A depends on the parametersp1,
p2,: : : pn of the nonlinear functionf(u), and on
the oscillation amplitudea. Therefore it can be
written as~f0;A(a; p1; p2; :::; pn).

It is important to emphasize the fact that this
expression is valid only locally. In the actual
systemsc 6= 0, so causing the fundamental am-
plitude to decay. The idea proposed in [4] is to
assume the approximation~f0;A(a; p1; : : : ; pn)
valid also in the casec 6= 0, by substituting the
constanta with a time functiona(t) represent-
ing the time variation of the fundamental am-
plitude. Therefore~f0;A(a; p1; p2; :::; pn) will be
written as ~f0;A(a(t); p1; p2; :::; pn). The simu-
lation results shown in [4] validate this assump-
tion for simulated noise-free data.

� Low-Energy Harmonics Approximation.An es-
timateâ(t) of the fundamental amplitude is then
obtained with sophisticated techniques of sig-
nal synthesis in the TF plane. This part is in-
novative with respect to the basic algorithm in
[4], and represents the key point of the method
when data are affected by noise. The idea is
to construct a synthetic signals(t), whose in-



stantaneous frequency is forced to bef̂0(t), and
with exponential decaying amplitude

s(t) = a(t)cos'̂0(t) = �e��tcos'̂0(t) (3)

where

'̂0(t) =

Z t

0

2�f̂0(t
0)dt0 (4)

Then a minimization problem in the least square
sense is set up, between the Wigner distribution
of the noisy signal ands(t)

min
�;�

kW [s]�W [u]k
2
2 (5)

The parameterŝ�; �̂ of the minimum point de-
termine the estimated fundamental amplitude

â(t) = �̂e��̂(t) (6)

Combining these two approximations, the ex-
pression of the fundamental is finally reached:

~f0(t) = ~f0(t; p1; p2; :::; pn)

= ~f0;A(â(t); p1; p2; :::; pn)

The exponential model for the amplitudeâ(t)
turns out to be a good choice for the nonlin-
earity used later as an example in the validation
section, but other models are also possible (one
suitable in general is the polynomial one).

Minimization Step. The third step of the method is based
on a matching algorithm between~f0(t; p1; p2; : : : ; pn)
andf̂0(t). The hypothesis is made that the nonlinear-
ity responsible of a given measured signalu(t) should
be able to best fit its fundamentalf̂0(t). For each non-
linearity the minimumMi of k ~f0(t; p1; p2; : : : ; pn)�
f̂0(t)k is evaluated for each nonlinearity. In our ex-
amplei 2 [1; 5] is an index for the five nonlinearities
of Table 1. Nonlinearities are then classified with re-
spect to the distanceMi reached in this data fitting
problem. The identified nonlinearity is the one that
reaches the minimumMi.

Notice that this method is also able to assign a set of
estimated parameters (p̂1; p̂2; � � � ; p̂n) to Mi. There-
fore both classification and parameters estimation are
attained with the proposed algorithm.

4. VALIDATION OF THE METHOD

The method has been validated by simulation for the five
nonlinearities in Table 1. Five test signalsuI(t) (I=A, B,
C, D, E) were created by simulation, each one representing
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Figure 3: Results of the classification process. Solid line
with value equal to 1: Normalized minimum reached by
nonlinearity type C. Circles (”O”): Normalized minimum
distances reached by the best competitor of C

the free oscillation generated by a non linear system of type
I . The results of the five tests, shown in [4], validate the
method in the ideal case of noise-free data.

In case of noisy data similar results have been obtained.
A signalu(t) has been generated with the nonlinearity type
C of Table 1. Then a fractal noise of the Wiener type has
been added to this signal, with SNR values of 20, 10, 5, 0,
-5, -10, -15, -20 dB. Ten noisy signals have been generated
for each SNR value.

The method has been applied to this set of signals, and
the results are shown in Fig. 3. The solid line with con-
stant value equal to one represents the normalized mini-
mum reached by the approximation function type C. The
circles (”O”) represent the normalized minimum reached by
the ”best competitor” of C, that is to say the approximation
function that gets nearest to the minimum reached by non-
linearity C (the normalization has been obtained by dividing
for each minimum obtained by C). For this kind of problem
the best competitor is always nonlinearity type B. It is pos-
sible to see that all the circles are located in the bottom of
the diagram, and this means that the approximation function
type C always reaches the minimum distance with respect to
the others. The identified nonlinearity is hence always type
C, the correct one, proving the validity of the method. It is
also possible to notice that the variance of the estimate in-
creases as the SNR decreases. From the obtained results it
is possible to infer that the proposed method should have a
good behaviour for fractal noise with power spectrum1=f�
when� > 2. In fact, as� increases, the spectrum turns



out to be more and more concentrated around the zero fre-
quency, making the highpass filtering more effective.

5. CONCLUSION

In this paper an original method for the classification of
nonlinear systems has been presented, based on the time-
frequency analysis of the free oscillations. The method is
robust, as it works also in presence of high-level fractal
noise.
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