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ABSTRACT: This paper presents & new technique to com-
pute elliciently the [ and & spectra, and the F = @ eross-
spectrum of the self noise appearing at the cutput of the
gcro-memoty, high order nonlinear device employed in a clock
recivery system. It is koown that these spectra play an im-
partant role in the phase jitter performance of the clock regen-
grator. The results are very general and applicabls to many
cazes of practical interest. A numerical example provided at
the end of the paper shows that the new approach yields very
accurate results and is much faster that the wsual computer
simulation method.

1. Introduction

A popular method for clock synchronization in & coherent
conunumcalion system wnsists of passing the incoming sig-
nal, either at IF or at baseband, through a zero-memory de-
vice with an even nonlincarity and then feeding the resulting
waveform to a phase Tocked-loup or equivalently to & band-
nass filter centered at the pulse repetition frequency, 1/, =0
thot o discrete tone is gencrated at the aymbol rate frequency
a5 shown in Fig. 1. Many forms of nonlinearities may be used
for this pnrpnse. The moet common are squars-law [1], abso-
lute value |2|, and fourth law [3]. In e high signal-to- noise
case, the recovered clock is madnly contaminated by a data
fdependent noise , whick is called self nowe or paltern noise.
CGrardner hes pointed out that the self noise component that is
in phase with 1le recoverad clock plays a different role from
the component that is quadrature 4], To properly anslyze
the eontribution of each of these noise components to phase
Jilber, Lhe power spectra of the two noise components must
be found separately.

Dealing with a square-lew clock regenerator for PAM sys-
Lets, the [ and @ self-noise power spectra. was ohtained ana-
Iytically in [5]. When dealing with etrongly band limited sig-
naling pulsea, nonlinearitics other than the square-law st
be considered 18,8]. Tnfortunately, clock cirenits implementad
with nonsquare-law devices are hardly tractable mathemati-
cally 9 and, in fact, their phase jitter performance has only
been evaluated hy compiter simulation '10]. In this paper,
we present a new technique to compute the [ and € spectra,
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and the [ —  cross spectrum of the self noise appearing at
the autput of the zero-memory device with any even, high-
order nonlinearity. The tochmique i@ besed on the iterative
computation of the high-order crussmoments of the input
zignal tn the clack recowvery circuit. The results are rather
general and are applicable to many enscs of practical interest.
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Fig.1 Block diagram of o clock recovery system

2. Problem Statement and System Model

The demodulaled basebuand signal at the input of the clack
regenerator is represented by

e

()= Y axglt - k1),

[

{1}

where the data sequence {n} is assuied 1o be a statistically
independent hinary sequence taking the values £1, with equal
probabilities and ¢t} is the pulse shape employed in transmmis-
sion. ‘The high order zero-memory nonlinear device employed
in the clock regenerator is defined by a Anite power series of
the form:

N
wlt) — flalt)] = 3 ea™(1), (2)

n=fl
where the ¢,.’s, n = (J,1,..., N are given tcal conastanta and

2N iz the order of the nonlinearity. The nonlinenr(NL) de-
vice is [ollowed by a phase Incked-loap or, equivalently, by a
narrowband bandpass filter whose transfer function H{f) ia
centered at the symbol rate frequency 1/T. The output u(t)
of the NI devire congists of a periodic component F(#) with
pericd ', plus a zero mean random part V(1) ealled self noise.

wt)
N(t)

Riy(t))
wt) — Ely(t)),

(3)



The narrow-band output filter will pass the desired periodic
component E[y(t)] at clock frequency 1/7. The transfer func-
tion of the output filter iz assumed to satisfies the handlimit-
ing condition: H(f) =0 for ||| — 4| > . Hence, a= far
as this filter is concerned, y{t) can be written as

y(t) = (2P 2 con(2mt /T + 0 — N(E)
where,
(P22 exp j# =< K[y(t)] expl—j2mt/T >,

and < f{s,t}, denotes the titne average of t{s, ) with respact
to 5.

Chur main olijective 1s 1o decompose the self naise eompo-
nent N(f) in (3) into Ny, in-phase and Ng, tha quadrature
components and to present an efficient method to determine
Lheir power spectra from which the phase jitter of the timing
wave can be determumed. N(#} can ba decomposed into  and
£} componcnts with reapect to cos{2xt/T + ) as follows .

Np(t) — Nit)oos(2mt/T + ) + Nt sin(2x/T + ) (4)
Nalty = N(tyous(2mt/T + #) — N{t)sin(2nt/T + 4) (5)

where ﬁ’(ij denntes the Hilbert transfortn of NV(#).

3. Power Spectral Densities of Decomposed
Self Noige

Since z(t) is a cycloetationary process{CT) zo0 ia N (¢} in (3).
Thus its correlation function expressed as By {t+7/2,t—7/2),
which is a function of two independent, variables, t and 7, is
petiodic in ¢ with period T for each wnhic of . Its Fourer
series expansion and its time dependent complex Fourier vo-
efficients 75, {7) are by given (6) and (7), respectively.

| o
Ru(t+ /2t =7/2) =  rifr)ep(2kt/T), (6)
k= —as
1 T/
ra(r) = 7 Rult+1/2t~1/2)
-Ti2

* exp( -2kt /T, (7

As will be sesn shortly, the Line deperident complex Fourier
onefficient defined by (7) plays an important role in determin-
g the power spectral densitics of T and € components of the
self-noise. Garduer calls the 745 (1) as the “evelic antncorre-
lation function” and its Fourier transform denoted by S%(f)
a5 the “cyeclic spectral density™ [11].

We now concentrate on the exact. cormmtation of the power
speciral densities of ! and ¢ and the 7§ eross apeetrum
of self noize. Since N(#) is a CS provess, so are Nrit) and
Mr(t). Therefore, their autocorrelation function are also pe-
rrodic with period I' and, they can be expended into Fourier
series ag follows:

=+

Ry, (t+ri2t—1/2)= Yo%, (7)exp(2xkt/T). (8)

k=—n0

+Foms

Rug(t+7/2,t—1/2)= 3 riy,(7)exp(2rht/T). (9)

k=—oo

Furthermore, the Ny(#) and Ng(t) are correlated and their
eorrelation plays an important role in the phase jitter per-
formance of the clock regenerator.  Similarly, the cross-
correlation of N;(t} and Ng(t) By wo(t + /2t 7/2) 13
also T-periodic and can be expressed in Fourier series as

+oa
Rorpeg (1 7/2,8—1/2) = 3wy, n, (7hexp(2nkt/T). (10)

=00

The I and € power specira and Lhe J— Q) cruss power spec-
trum denoted by Fr(f), Po(f) and Frg{f) can be obtained
from {8) (9} and (10) by taking first the time averages over T
and then Laking the Fourier \ransforms of the resulting fune-
tinnz. That is,

Frif) F{< Ry (t 1 7/2,t —7/2) >4}
= F{ry ()} = 5%,(F) (11)
Qf':.f} = F{‘: HHQ“ + Tlf!,t - Tfr!} }1}
= Ky (1)} = Sh () (12)
Brolf) = F{< Rung(t+ 78t — 7/2) >}
= By o 1T = 8%, (T) (12)

where “F" denotea the Fourier transform operation.

We now present exact analytical expression to calculate the

Iond @ and T — Q cross power spectral densities of Lhe self
nuise N (i), generated at the onmit of any general type of
Zero-memory non-linear device. “L'ha derivation & lengthy and

therefore is given in the Appendix. The final expressions are
a5 Tollows:

Pilf) — SSUf+ 1/ + 1/T)

+ SN = 1= f + 1/T)

+ 2Re{S%(fite Pullyr —|F)  (14)
Palfy = SR(f+1/Thef + 1/T)

+ Sp(f =1/ Tl —f + 1/T)

— 2Re(SH(MNTPu(1/T - |F)  (15)
Pip(f) = §[Sh(F - 1/Timif+1/7)

~ SR lf — 1/ T)ul=F + 1/T)

—2Im{ SE ()}~ u(1/T - |f])]

where «(.] denotes the unit stap function and the %), k =
0,2 ia the eyelic apectrum of N(#), that is F{rk(1)}. Re{.}
and frr{.} denote the real and imaginary parts of a complex
guantity.

(16)



4, lterative Computation of the Power
Spectral Densities

"The equatione for Pr(f], Pg(f) and Prg(f) in (14 16) arc
the main results of this paper. The main steps o compule
thern iteratively are summarized helow as follows.

Step 1. Determine the autocorrelation function Ba(t, s)
of the self naoise, iteratively as follows:

From Eys.(3) aud (2}, the autocorrelation function Ry (t, &)
can be expressed as

NN

Hults) = 3 emen {Elz™(t)z™(s)]
m=1 n=0
— kP ) (s)] ] {17}

which 15 a linear combination of the high-order monenls sl
high-order croas moments of o{t) at time instants ¢ and =,
namely,

Moman(ts) —  El*™(82"(s)],
Manlt) = E[Z#8).

We now present the expressions to compute Mg, and
Mam an, iteratively, The derivations are lengthy and involved.
The details can be found in [12]. The foal ilerabive expres
girms are as follows:

Hevutive Covgrulntion of Mo,

?;:_‘1' ){—l:lfmg[n_‘-;.fﬂ"'l}, (18)

T

i=1

where My = 1, and

fﬁ;.lz{ >k glo - KT} ifi=1

BN B | T lole — 1T i=2,3,.
where g{-) is the pulse shape as delined im (1) and B;'s are
the Bernoulli numbers,

Tteratwe Computation of Mom o

Forn=1,2,.. . andm=10,1,2,..
-
B~ 1 -1
li.'f"-!‘-?rn.,ﬂﬂ. = - ; [( oy )P'z‘! o (23 +1 )P'E%'H :| flg:l
where

3=0
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Similarly, for n = 0,1,2,. .. and m =0,1,2,.. .,
=/ n —/
Mzt1,2n+1 — = lz ( % ) o + Z (Ei | 1) it
i=0

i—0
20
where

Gl =

{ 2m+1
>y

) [_ 1}m+n+l—1—j
J=0

Im 2i8m 1
X Mag o

24 1
2i+1

Qﬂi-t—l - Z (

F=il

2m—27, 20 -0
® fa 4 Mot 2i41

and, initially, for n =0 and m —0,1,2,.. .,

M‘zm.u =~ Z (

i=l

am

1 i
2j - 1 )f‘”jﬁﬂ " Motm—g 0. (21)

Note that /1% and f£7 are defined as follows:

( 2o uir
Ej; UV, '
Clpy )| Bpggar| g v,

h El

ifp=1,4=0
fp=0,g=1
if p+qe odd o
if p+ ¢ € eventl.

77 =

[ S vd, ifp=0,g=1
= 2ok B " ?fP=1>Q'=D
' ClmgllBprgn| vy, ifp+geodd

if p+ g € evendt.

N 1

where ¥ denotes the set of natural numbere and

ug = g(t— kT,
m 2 gls—kT),
A getetlraptatl _ o
“lpa) = ﬂi— g+1 :

Step 2: Determine the complex Fourier coefficients r'jf,“ k=
0,2 by expanding Rp(t, 2} into Fourier series as follows:

| o=
z rh(Thexp(2rkt/T ",

| pp——

| (T2

Tf Ru(t+7/2.¢—1/2)
T,."E

x expl—2wht /T

Rwlf+r/20-+/2) =

Th(T)



and finally,

Step 3: Find 8%,k = 0,2 by taking the fast Fourier trans-
forms of #%(7) and use them in the power spectral denzities
expressions, givel by Egs. (14-16).

5. A Numerical Example

We now compute the I, & spectra and T — £} cross spectruim
of the =elf noise at the ontput of a fourth order nonlinear
device when the input i a basebend signal represented by

=]

(t) = Z gt — kT,

& ——ua

(22)

where date sequence ay i sssumed to be a statistically inde-
pewdent Binary sequence taking values &, with equal proba-
bilities and g(t) is the Raised-Cosine type of pulse shape with
orecse bandwidth factor a. We computed the power spectra
of each of Lhe components of the Sell Nolse for several ex-
cess bandwidth factors o and the results are suinmarized in
Figs.2 and 3. We observe from these curves that both spectra
increase moautonically with @ for 0.1 <« F < 08 Also note
that, for the Nyquist pulse shape used here, the crose-power
spectrum was very amall and not distinguishable from com-
pulational noise, We also oomnpared the results obtained here
with Fang's results[2] and concludad that they ars in a very
good agreement with each other,
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6. Conclusions

Equations for £ (f), Fy(f) and Mg obtained in Sec.d are
U main results of this paper. The main steps to compute
them are summarized as follows:

¢ Determine fin(t, g}, iteratively

¢ Determine the complex Fourier coefficients % (r), & —
0.2 Iy expranling Bw(f, 8) imto Fourier series.

» [Find Sf{r{ ik =0, 2 Ly Laking the fast Fourier transforms
nf 7% (7} and use them in the expressions for £ ( f), Pl f)
ﬂ,nd pf@.

A mumerical example given in Sec.5 showed that this new
approach yields results which are in & very good agreement
with those given in the hiterature and is computationally much
faster than the usual computer simulation approach.



Appendix
Derivations of I, Q) Puwer Spectra and [ — ¢ Cross
Powetr Spectrum of the Self Noise

Derive (14-16) o5 follows: Conzsider the complex cnvelope

[N (&) + jii(y)] eIt eTre)
= Nilt)+ jNg(t).

I'(t)
(1)

Snlve this equation to ohtain

Nty = %r.[ﬂeftzm-r 1) %r' (t)e FEUT18)
. 1 1.,
Nty = EI‘{!]+ 5l (t)
. 1 1.,
Nolt) = 2Tt — 52T (),

Then, we can easily show that

3 (580 —T) - 507+ T
+SERE(S) + SERR ) (.2)

where S%(7), SE(f) are the eyelic spactrs of N(t) and [(t),
respactively, and S5 ..(f) ie the eross cyclic spoctrum of ['(#)
and I™(t}, as defined in S5ec.d. Using the cyelic speclra ol
Hilbers transforma given in 10, page 406],

=S5 (). i, |f] <« |k|/2T

SN =

SHt) { +S&(F), if, [f > kl/2T (3}
—3S5(f)y if, < kf2r
Shath) =Sy n) ={ D RIS (o

we obtain the following

SEU) = SR+ LT ulf + 1T - |k|/2T), (5)
Sfe-(f) = SE(fle PPulk/2T + 1T —|f]), (6)

Sk} = 18K = SE()
8B (f) + Sk ], (1)

Skalf) = 7[SE-SE(H)
Ske () - S ()], ()

Shno () = L [SK(H - 5h (1)

—Sp-(F) + St )] (.9)

Finally, snbatitnting (A 5} and (A &) into [AY) to (4.9}
with & = (} one obtains (14) to (16).
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