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ABSTRACT

This study consists of simulation of Gaussian Potential Function
Network (GPFN) [1] and application to filtering problem called
intersymbol interference  (ISI) equalization which is
conventionally handled with digital equalizers. A GPFN is a
Radial Basis Function (RBF) like net. It has three layers; one
input layer, one hidden layer, which includes the nodes with
gaussian activation function, and the last is the output layer. Its
distinct feature comes from its ability of automatic recruitment of
hidden layer nodes. The filtering of signals, which are corrupted
with additive white gaussian noise (AWGN) to represent ISI,
performed with this simulation showed that this network is a
suitable tool for adaptive equalization.

1.LINTRODUCTION

Many digital communication channels are subject to intersymbol
interference (ISI). This interference is usually a result of the
restricted bandwidth allocated to the channel and/or the presence
of multipath distortion in the medium through which the
information is transmitted. In symbol-by-symbol equalization,
the problem is that of using the information in the observed
channel outputs to produce an estimate of the current output. The
device or algorithm that performs this function is the equalizer.
Equalizers have different architectures and algorithms like
transversal equalizer or maximum likelihood estimator which has
theoretically the best performance but needs extremely expensive
computation.

Neural net models are classified by net topology, node
characteristic and training or learning rules. These rules arranges
the way the net learns the required assignment. It includes the
initialization and adaptation of parameters and weights for
minimum error. The simple node in a neural network model
called perceptron. The capabilities of single perceptron are
limited to linear decision boundaries and simple logic functions.
However, by cascading peceptron in layers, called multilayer
perceptron (MLP), we can implement complex decision
boundaries and arbitrary boolean expressions.

Initial work [2]demonstrated that MLP equalizers were superior
to conventional transversal and decision feedback equalizers in
terms of the usual measure of equalizer performance, which is bit
errror rate (BER). On the other hand, the work also highlighted
several of the difficulties that are well known in the wider
application of MLP’s. These are extreme length of training times;
the indeterminate nature of the training times; the lack of
metedology for architecture selection. These problems are largely
unsolved and severely restricted the practical application of
MLP’s in this area.

An important MLP model is the Radial Basis Function network
(RBF). RBF network has close relationship to Bayesian methods
for channel equalization and interference rejection. RBF is a two
layer network whose output nodes form linear combination of the
basis functions computed by the hidden layer nodes. The basis
functions in the hidden layer produce a significant nonzero
response only when the input falls within a small localized region
of the input space. Although implementation vary, the most
common basis is a “Gaussian Kernel® function. The node outputs
are in the range from zero to one so that the closer the input to
the center of the gaussian the larger the response of the node.
GPFN is an RBF like network, which differs in learning scheme
called hierarchically self organizing learning scheme. The nodes
in hidden layer of GPFN is created automatically based on some
checkings. This property of the network also provides the
network with not sticking to local minimums.

This study consists of replacing Linear Transversal Digital
Equalizer (LTE) with GPFN for estimating the digital signals
corrupted by additive white gaussian noise (AWGN) and
measuring and comparing the performance based on BER.

2.SUPERVISED LEARNING WITH
GAUSSIAN POTENTIALS

2.1 Gaussian Potential Function Network

A potential-function network approximately realizes a “many-to-
one” continuous mapping by synthesizing a potential field over
the input domain by a number of potential functions. The
potential field @can be described as the weighted summation of a



number of potential functions, y(x, p,),i =1,..., M characterized
by parameter vector, p;, i=1,....M
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where M, ¢, and p; respectively, represents the number of
potential unit functions (PFU), the summation weight, and
parameter vector of the i potential function.

The unnormalized gaussian function is selected for the
construction of potential-function network (PFN) since the
function is highly nonlinear but has many well defined features,
owing to its use in probability theory. A gaussian potential
function is defined by;
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where x represents an input pattern and m', and K’ represents
respectively the mean vector and the shape matrix (defined by the
inverse of the covariance matrix) of the i potential function.

We can write d(x,m’,K’) in an expanded form;
dm K =3 5 ki, =), =) 3
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where

X j™ element of input vector x

m’j : /™ element of mean vector m'
'x: (k)" element of X' matrix

and k‘ﬁ can be written in terms of standard deviation GZ-, o'y and
correlation coefficient /' as follows;
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Instead of using the general form of kij-k, an approximation is
possible in the following form
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B) otherwise

In general, the input vector is multidimensional. The existence of
the shape matrix provides the possibility of having different
variances in different dimensions i.e. different crossections of
GPFs are possible. By this approximation some flexibility is lost
that will be compensated using more Gaussian Potential Function
Units (GPFU).

The network model proposed here is composed of three layers;
the input layer, the hidden layer, and the output layer. The input
and output layers are composed of linear units, whereas the
hidden layer consists of nonlinear GPFUs, which produce
gaussian potential functions. The weighted output values of the
GPFU’s are summed by the connections between the hidden
layer and the output layer in order to synthesize the required
potential fields. The three layered PFN with the GPFU’s
configured at the hidden layer is called the GPFN. Figure 1.(a)
illustrates the schematic diagram of a GPFN. Figure 1(b) shows a
detailed structure of the i™ GPFU. The calculation of (3) starts
with the subtraction of the mean vector of the i GPFU from the
input vector at the subtraction nodes.
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Figure 1. Schematic diagram of GPFN

Then the components of the vector obtained at the subtraction
nodes are cross correlated among themselves by the cross-
correlator to obtain N? cross-correlated term, is multiplied by the
corresponding kij-k of the shape matrix K’ at the multiplication
nodes and summed for d;. The output of the GPFU is then
generated by exponentiating d;.

2.2 Learning in GPFN

Learning in GPFN consists of determining minimum necessary
number of GPFU’s and the adjustment of the mean vector and
the shape matrix as well as the summation weights. The distinct
feature of learning for GPFN is its capability of automatically



(based on some decisions) recruiting of necessary computational
units (nodes).

The automatic recruitment of computational units is based on the
following decisions;

e Whether a new teaching pattern should be accommodated by
the GPFU’s already generated from the past training or by a
new GPFU.

e Whether the accommodation boundaries of individual
GPFU’s, defined by the contour of the equidistances from the
center of Gaussian potential functions, should be readjusted
to ensure error convergence as well as fast learning.

This learning scheme is called Hierarchically Self-Organizing
Learning Scheme (HSLS). This scheme has the following
implications;

e It starts with learning global mapping features based on a
small number of computational units with larger size of
accommodation boundaries, then proceeds to learning finer
mapping details by increasing the number of computational
units and reducing the size of accommodation boundaries.

e It changes the dimensions and shape of the error surface of
the error function defined in terms of the network parameters,
when the performance of error convergence is considerably
degraded. This helps to avoid to sticking on a flat or very
mildly sloping surface which might cause trouble.

The learning algorithm is composed of two parts; the first is
concerned with the adjustment of the network parameters and the
second with the decision on the minimum necessary number of
GPFU’s

The parameter learning is conducted with gradient-descent
method in which the parameters are updated according to the
error function which is the function of network parameters.

Since the gradient-descent method is well known in general, the
decision part of HSLS will be explained here.

2.1.1 Hierarchically Self-Organizing Learning

This scheme performs automatic recruitment of new GPFUs and
readjustment of the accommodation boundaries of every GPFU.
The network will start with small number of GPFUs which have
large accommodation boundaries for rough but global mapping.
This will give bad performance. But as the new GPFUs are
generated and accommodation boundaries are reduced, the input
space will be shared out by more GPFUs giving more precise
approximation.

For the accommodation boundary an effective radius r; is
defined in the form of a hypersphere , H,, defined in the input
space

H () ={xdCenl Ky <17) (©)

In addition a GPFU is assigned a property to represent the
particular class of patterns. This assignment is done at the time a
GPFU is generated by taking the same class represented by the
teaching pattern that invoked its generation.

Accomodation generation rules are as follows :

If the currently introduced teaching pattern falls inside the
boundary and belongs to the same class of any GPFU then
generation of a new GPFU is not required. Present parameters
will be updated. A teaching pattern will be accepted in the
boundary of a GPFU by the condition
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The effective radii of GPFUs will be reduced for precise
learning. The rate of reduction is important. Fast reduction will
cause generation of more than necessary number of GPFUs,
because individual GPFUs can not find enough time to converge
their optimum shapes. On the other hand, slow rate will certainly
result in minimum number of GPFUs, but will need more
learning cycle (random presentation of teaching patterns).

The best way to reduce r; is to measure the progress of the
learning. Since it supplies more GPFU and better learning it
should be reduced when learning progress is saturated with
currently available GPFUs. The progress of learning can be
measured in two ways:

e With performance index P defined as:
P=etm 8

where E,,, represents the root-mean-square error for N teaching
patterns

2 N
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*  With parameter saturation vector s;, defined for the i output
unit as:

‘ OE
Si;eu =a dnp +(1 _a)st;/d (10)

7
where O is a positive constant between 0 and 1.

The purpose of defining the parameter saturation vector is to

. OE . .
monitor ? , since the saturation of the performance on
dnj
learning implies the convergence of the parameters to an
extremum achievable with the number of currently available




GPFUs. In Equation (10) s; moves toward dE!’ . Two cases can
on,
be identified as

e If the network parameters remain stationary at a point or
wonder around a point in the parameter space, the norm s;
defined below gradually decreases toward zero.

e If the network parameters are on the way to converge to a
point in the parameter space along a certain direction, the
magnitude of s; gradually increases or decreases toward
oE

_r

On,
Therefore, by monitoring the value of ||sj| ( the maximum of the
sum of the columns), the saturation of the network performance
on learning can be detected.

3.EQUALIZATION WITH GPFN

The simulation was performed based on the model shown in
Figure 2. The binary symbols that have been passed through a
linear dispersive channel and then corrupted by additive white
gaussian were detected provided that LTE replaced with GPFN
(Figure 3). A linear dispersive channel introduces intersymbol
interference (ISI) and can be modeled as a finite impulse
response filter (FIR):
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where /. the length of the channel impulse response and a; ‘s are
the channel coefficients. The received signal r(k) has white
gaussian noise in addition to channel output is;

/-1
r(k)= Z a;x(k —1)+w(k) (12)

i=0

The input x(k) is chosen from {-1,1} with equal probability and
assumed to be independent. The channel output is corrupted with
additive noise of zero mean and variance d’,. At time k, the

A

detector (or equalizer) provides an estimate of x(k-d) as X (k-d)
based on finite number of noisy observed samples, r(k), r(k-1), . .
., "(k-N+1), where d is the decision delay and N is the number of
taps. The goal is to minimize the probability of bit error.

The channel coefficients were chosen as a,=/ and a;=0.5. The
received signals 7y, 7, rp where N=3, are the inputs of the
GPFN. GPFN is assigned to decide which signal (1 or —1) is
transmitted. If the output of the GPFN has different sign with the
actual transmitted signal, it is evaluated as an error.

The network generated 2 or 3 GPFU’s at different SNR levels
(e.g. 3 GPFU’s at 7dB). At high noise levels the error surface is
very serrated. On the other hand, the network is very sensitive to

parameters since the hidden layer nodes are automatically
generated. So selection of parameters play very important role in
succession of the network.
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Figure 2. System model used

The network was tested at several SNR levels starting from 7 dB
to 16 dB with 1 dB increment. It was trained using 5000 symbols
and the bit error performance was evaluated over 20000 symbols.
Results which compares the LTE and GPFN both trained and
tested on the same conditions is in Figure 4, which shows the
log(tot. number of bit errors/20000) vs. corresponding SNR.
Both filters reached the 0 error performance at 16 dB.
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Figure 3. The GPFN used instead of Equalizer (LTE)

Figure 4. Log(bit error (BER)/20000) vs corresponding SNR
(dB). *-.” line represents GPFN curve whereas *-* represents LTE



4.CONCLUSION

In many applications of neural networks there may not be
universally recognized “best” or “optimal” solution. The network
is presented with training set of input/output pairs to learn a
nonlinear mapping from input to output. Then the network tested
on unseen data, and if performance goals are met, the operation
is deemed a success.

GPFN and Hierarchically Self Organizing Learning Scheme
(HSLS)provides a base for adaptive structures. So this scheme
was used for filtering ISI in linear dispersive channels instead of
conventional mechanism called linear transversal digital
equalizer (LTE). When the results of this study concerned, GPFN
and HSLS performed good in general but not better than LTE.
But both curves are very close to each other. Although this might
be related to the improper selection of several parameters at the
beginning of learning, there is no definite way of selecting these
parameters for different application. Because, it is strongly
dependent on the nature of the application. So it needs some
experimental information. Also selection of the neural network
architecture is a very effective factor and it is obvious that GPFN
and HSLS does not leave the selection of hidden layer nodes to
the user. So an effective optimization of architecture should be
implied to the network at the time of constant parameters
selection like learning rate or saturation vector parameters, etc..

In the light of these facts, it might be said that GPFN is apt to
succeed a good performance for adaptive equalization but needs
more experimental study
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