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ABSTRACT

In this paper, we introduce a new algebraic framework,
issued from the theory of nonlinear system, for studying
the problem of equalization of nonlinear transmission
channels. For this purpose, we introduce the nonlinear
system rank concept. Our method gives the condition
on the rank of the nonlinear system, here the transmis-
sion channel, which permits the perfect equalization.
We show that, for a nonlinear satellite transmission
system, this operation is possible except in some do-
main of singularity that can be determined. In this
case, the equalization will be not possible even by a
nonlinear equalizer.

Keywords : nonlinear system, di�erence algebra,
rank of nonlinear system, left invertibility, equalization.

1. INTRODUCTION

The problem of equalization is certainly one of the ma-
jor research topics in telecommunication. Its purpose
is the elimination of channel induced degradation ef-
fects. In the linear case, this problem has been inten-
sively studied for several years [1] [2]. Most of available
methods, however, are proposed for scalar systems (sin-
gle input-single output).

In the other hand, the equalization of nonlinear sys-
tems is of considerable practical interest, although it
has attracted much less attention. Many real-life sys-
tems exhibit nonlinear characteristics. Since high speed
data transmission in digital radio systems and in satel-
lite communication uses ampli�er devices which usually
work near saturation. These ampli�er devices intro-
duce memoryless nonlinearities which, combined with
the e�ects of the transmission and reception �lters, be-
come nonlinearities with memory. The input/output
relationship of the channel becomes nonlinear and is
usually modeled by polynomial or by Volterra �lter of
�nite order [3] [4].

Recent works have showed that the systems theory
promises interesting applications in the equalization of
linear transmission channels [5] [6] [7]. The aim of this
work is to revisit the problem of equalization of non-
linear transmission channels. We apply, here, the tools
developed in the framework of di�erence algebra for left
invertibility.

The organization of this paper is as follows. The
mathematical tools are �rst presented in section 2. In
section 3, we present a short overview on the theory of
nonlinear systems, and in particular, the input output
invertibility. The link between equalization and left
invertibility is established in section 4. Section 5 is de-
voted to the application of these tools for the equaliza-
tion of satellite channels modeled by an input-output
nonlinear system.

2. SUMMARY OF DIFFERENCE
ALGEBRA

All the �elds considered here are of characteristic zero.
The usual �elds of rational, real and complex numbers
are well known examples of such �elds.

2.1. A di�erence �eld is a commutative �eld K
which is equipped with a monomorphism

� : K ! K (1)

called transformation, which satis�es the following rules :

8a; b 2 K; �(a+ b) = �(a) + �(b);
�(ab) = �(a):�(b);
�(a) = 0, a = 0:

(2)

In the context of signal processing, � should be in-
terpreted as a backward shift of one unit of time, i.e.,

� (x(t)) = x(t� 1): (3)

A constant is an element c 2 K such that �(c) = c.



2.2. A di�erence �eld extension L=K is given by
two di�erence �elds K, L such that :

a) K � L ;

b) the transformation of K is the restriction to K of
the transformation of L.

2.3. An element a of L is said to be transfor-

mally algebraic over K if, and only if, it satis�es an
algebraic di�erence equation with coe�cients in K. It
means that there exists a polynomialP (�0; � � � ; ��) over
K such that P (a; �(a); � � � ; ��(a)) = 0 ; where ��(a) =
a(t��). The element a is said to be transformally tran-

scendental over K if, and only if, it is not transformally
algebraic over K.

2.4. A set fai=i 2 Ig of elements of L is said to be
transformally K-algebraically independent if, and only
if, the set

�
�(j) (ai) =i 2 I; j 2 lN

	
is K-algebraically

independent. Such an independent set, which is max-
imal with respect to inclusion, is called a transformal
transcendence basic of L=K. Two such bases have the
same cardinality which is called the transformal tran-
scendence degree of L=K; we denote it by transf tr

d�L=K. If there exists a �nite set of di�erence quan-
tities ! = (!1; !2 � � � ; !s), such that L is generated by
K and !, we say that L=K is a �nitely generated dif-
ference �eld extension. Set L = K < ! >.

2.5. Denote by K[�] the set of polynomial linear
di�erence operators

P
ai�

i (ai 2 K). A di�erence k-

module M is a left K[�]-module [8].
If there exists a �nite set of di�erence quantities

! = (!1; !2; � � � ; !s), such that M is generated by !,
we say thatM is a �nitely generated di�erence module.
Set M = [!].

2.6. A di�erence �ltration of a di�erence moduleM
is given by an ascending chain (Mr) of K-vector spaces
in M .

For example,

Mr = span f!(n); !(n � 1); � � � ; !(n� r)g (4)

is a di�erence �ltration of M = [!].

3. INVERTIBILITY OF DISCRETE TIME
SYSTEMS

Input-output invertibility is a most classic subject of
investigation in control systems. A vast literature has
been devoted to it, which will be partly analyzed in the
sequel. Left (resp. right) invertibility is equivalent to
the possibility of recovering the input from the output
(resp. independence of the output variable).

For a constant linear system, the invertibility is ob-
vious by the use of the transfer matrix. In fact, the
system is right invertible (left invertible) if and only if
the transfer matrix is right invertible (left invertible).
In the case where the system is described by a state
representation, such a concept remains applicable. In
addition, we dispose of a structure algorithm due to
Silverman [9].

In the nonlinear case, the classical methods have
tried to generalize, under di�erent aspect, the struc-
ture algorithm [10]. Thanks to di�erence algebra, in-
troduced by Fliess [11][12], that the problem has been
solved for the �rst time. Thus, the rank of a linear and
nonlinear system, called transformal output rank has
been de�ned for the �rst time. This rank generalizes
the rank of the transfer matrix. In the following of this
paragraph, we will give a short review of the main re-
sults, issued from the di�erence algebra approach, on
the inversion of discrete time systems.

Linear system : Let (S) be a given linear system,
with the input u = (u1; u2; � � � :; um) and the output
y = (y1; y2; � � � :; yp). The transformal output rank �
of (S) is the rank of the di�erence module [y] [11][12].
The system (S) is left (resp. right) invertible if, and
only if, � = m (resp. � = p)

Proposition 1 : [13][14] For r big enough

� = dim [Vr+1]� dim [Vr ] (5)

where Vr = span fy(n); y(n � 1); � � � ; y(n � r)g.
Nonlinear system : Let (�) be a given nonlinear

system, with the input u = (u1; u2; � � � ; um) and the
output y = (y1; y2; � � � ; yp). The transformal output
rank � of (�), is the transformal transcendence degree
of K < y > =K [11][12]. The system (�) is left (resp.
right) invertible if, and only if, � = m (resp. � = p)

Proposition 2 : [13][14] For r big enough

� = dim [Vr+1]� dim [Vr ] ; (6)

where Vr = span fdy(n); dy(n � 1); � � � ; dy(n� r)g, and
dy(n) is the di�erentials of y(n).

4. EQUALIZATION AND LEFT
INVERTIBILITY

During the transmission of digital message, through a
channel linking two points in the space, the informa-
tion is contained in a single composed of symbols. The
physical channel (cable, wire, free space, etc.), intro-
duces distortion in the transmitted signal. For exam-
ple, due to the limited frequency band of the channel,
the received signal is distorted by the intersymbol in-
terference.



The equalization is a technique employed to recover
the transmitted signal from the received one, and this
in spite of the channel induced interference. Its role is
then to inverse the e�ects of the channel. The equal-
ization is then closely related to the left invertibility
problem of input-output system.

Proposition 3 : Let C be a transmission channel
with m the number of sources and p the number of
sensors. The condition that guarantees the existence
of an equalizer is that the rank of C, considered as
input-output system, is equal to m [15].

5. APPLICATION TO THE
EQUALIZATION OF A SATELLITE

TRANSMISSION SYSTEM

5.1. Problem formulation

Let's apply this proposition to a satellite transmis-
sion system equalization. The transmission satellite
channel (�gure 6), considered here, is described by the
following nonlinear input-output di�erence equations :

8<
:

sn = an + h1an�1;
!n = �sn + �s3n;
yn = !n + h2!n�1;

(7)

where h1, h2, � and � 2 lR, an is the emitted message
and yn the received message.

The study of the invertibility of this channel will be
done by using the following �ltration Vr = span fdyn;
dyn�1; � � � ; dyn�rg. The di�erentials of sn, !n and so
of yn are given by :

8<
:

dsn = dan + h1dan�1;
d!n =

�
� + 3�s2n

�
dsn;

dyn = d!n + h2d!n�1:
(8)

One has :

dyn = �ndan + �ndan�1 + �ndan�2 (9)

where :

8<
:

�n = � + 3�s2n;
�n = h1�n + h2�n�1;
�n = h1h2�n�1:

(10)

Then dim [span fdyng] = 1, dim [span fdyn; dyn�1g]
= 2 and dim [span fdyn; dyn�1; � � � ; dyn�rg] = r + 1.
We deduce that for r 2 IN :

dim [Vr+1]� dim [Vr ] = 1: (11)

Then the system is left invertible and the equaliza-
tion of such channel is possible when this rank condi-
tion remain valid.

5.2. Simulation and results

The rank of the system described by the equation
(7) is equal to 1 (which corresponds to the condition
announced above) except on a hypersurface at which
dim [Vr+1] � dim [Vr] = 0 ; this situation occurs when
�n = 0. Then the system is left invertible, and so the
equalization of such channel is possible, except on a
hypersurface de�ned by :

�
(a; b) 2 lR2=� + 3�s2n = 0

	
(12)

To illustrate this paragraph, we consider an equal-
izer using a Volterra �lter. Figure 2 exhibits the Mean
Square Error (MSE) evolution, corresponding to the
di�erence between the equalizer output and the trans-
mitted data. Two cases of channels are considered. For
the �rst case (�gure 2-a), where the values of param-
eters a and b does not verify the condition (12), the
equalizer succeeds to recover the correct transmitted
data (The MSE take low values). For the second case
(�gure 2-b) corresponding to the condition (12), the
MSE converge to the in�nity and the equalizer does
not succeed to invert correctly the channel.

6. CONCLUSION

In this paper, we have proposed to use the tools devel-
oped in the framework of di�erence algebra to study
the left invertibility of nonlinear transmission channels.
We have used the concept of the transformal output
rank of a nonlinear system to establish the condition of
left invertibility and so the possibility of equalization
of the channel. The condition is veri�ed on a satellite
transmission channel which is modeled by a nonlinear
system.

It will be interesting to �nd, by using this tools of
algebraic systems theory, the equivalent of the concept
of minimum and non-minimum phase channels in the
nonlinear context. Which is of great bene�t for blind
equalization.
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1 + h1z
�1 S[x] =

�x+ �x3
1 + h2z

�1- - - -
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Figure 1: Nonlinear channel transmission modelling
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Figure 2: The equalizer MSE evolution : equalization
of a satellite channel (case a) : � = �0:375 and � =
0:25, case b) : � = �0:375 and � = 0:5)


