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ABSTRACT

This paper presents an original approach for blind deconvo-
lution of a nonlinear communication channel using a crite-
rion based on the second- and fourth-order moments of the
input sequence. This approach is a simple extension of kur-
tosis maximization a method well known in a linear blind
identification. We illustrate through a simple example that
kurtosis maximization may also be used in a generalized
Wiener-Hammerstein nonlinear systems identification pro-
cess. The only constaint on probability distribution of the
unobserved input process is non Gaussianity.

1. INTRODUCTION

The problem of blind deconvolution arises when an unknown
system output is observed, but whose input is unobserved.
The final purpose is the recovering (deconvolution) of the
input process. This is a problem of considerable interest in
several fields including channel equalization [1].

Kurtosis maximization has been used for solving blind
deconvolution of linear systems [2] [3], [4]. This method is
universal in the sense that no restrictions, except non Gaus-
sianity, on the probability distribution of the unobserved in-
put process is imposed. In digital communication channels
nonlinear distorsions often arise at high transmission rates,
due to saturations generated by amplifiers [5], [6]. Conse-
quently, linear techniques require modifications in order to
treat this kind of nonlinear problems.

We propose to identify the nonlinear communication chan-
nel using a criterion based on the recovered sequence kur-
tosis maximization. The communication channel is repre-
sented by a generalized Wiener-Hammerstein nonlinear sys-
tem composed by a cascade of a linear dynamic, a static
nonlinearity and a linear dynamic systems (L�N �L) [7].

The problem is illustrated in figure 1, whereH1,H2 are
unkown linear dynamic filters and'(:) corresponds to the
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Figure 1: Blind deconvolution model

static nonlinear function. The nonlinear parametric model
form is known but the values of the parameters are unknown.
We observe the ouputy(t) of H2 when the inputx(t) is
an unknown zero mean i.i.d. random variable with a pre-
specified non gaussian distribution. We intend to recover
(deconvolve) the input sequence or equivalently to identify
the inverseH�1

2
�'�1�H�1

1
, supposing thatH1, H2 and

'(:) are invertible.

2. NONLINEAR COMMUNICATION CHANNEL
MODEL

Consider the system of Fig.1. In order to facilitate the sys-
tem inversion, the linear dynamic system is choosen as:

H(z) =
1

1� a1z�1 � : : :� amz�m
(1)

wherem is the memory length anda1; : : : ; am are the un-
known parameters of the filter.

The static nonlinearity can take, for instance, a polyno-
mial form for modeling an optional nonlinear encoder in the
V-34 in a telephone channel [8, 6] or the Saleh’s analytical
model for modeling the nonlinearities of a travelling wave
tubes in satellite communication [9, 5].
Here we shall restrict the form of the invertible static nonlin-
ear function: a commonly used function for modeling satu-
ration is a sigmoid function (see figure 2 for� = 1, 2 and
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Figure 2: Sigmoid function

5) well known in the neural networks community [10] and
defined as follow :

'(u) = (
2

1 + exp(��u)
� 1)� : (2)

Note that'(u) = �'(�u).

3. PROBLEM FORMULATION

3.1. Kurtosis maximization in the linear case

It is known that linear prediction methods based on second
order statistics are not sufficient for solving the problem of
blind deconvolution of scalar linear systems. For that rea-
son, the problem cannot be solved when the input process is
Gaussian. Consequently, approaches for blind deconvolu-
tion based on high order moments have been proposed [4],
[11], [12], [13], [14], [15].

In these methods, the linear filter is identified through
the maximization of the kurtosis of the recovered sequence
x0 under the constant energy constraint�2

x0 = �2
x

[4]. Then
the probability distribution of the recovered sequence is equal
to the probability distribution of the input sequence.

We assume the existence of the moments ofx(t) up to
the fourth order and we suppose thatKx 6= 0, whereKx is
the kurtosis associated withx(t) defined by :

Kx

4
=

E[x4]

(�2
x
)2
� 3 (3)

whereE[:] stands for the expectation operation.

Blind deconvolution can be perform if

1. �2x = �2
x0 (energy constraint),

2. Kx = Kx0 , or equivalentlyjKx0 j maximum,

3. there is no measurement noise.

In [4] it is shown thatjKx0 j has no spurious local max-
ima under the energy constraint. Therefore, a gradient-search
algorithm is expected to converge to the desired response.

3.2. Nonlinear case

This approach based on kurtosis maximization developed
by [3] and [4] is efficient in the case of linear systems (chan-
nels). We intend to illustrate that it can also be applied to
nonlinear communication channel at least in simple cases.
We show, with an illustrative example (with and without
noise measurement), that the kurtosis of the recovered se-
quence presents a maximum when the system parameters
are correctly estimated. Consequently, kurtosis maximiza-
tion can be used for this kind of nonlinear system identifi-
cation.

To the best of our knowledge, this approach has never
been used for this kind of nonlinear system analysis.

In order to perform the recovery of the input sequence,
the following procedure is used (presently this procedure is
not yet automatic):
Kx0 depends on the parameters of the linear filtersH1 and
H2 and also on� and�. In a first step we choose arbitrarily
the parameters of the filterH2. Then we deducê� in order
to ensure that the static sigmoid function (2) is invertible
and we estimate� u(t) (it is not necessary to estimate the
gain�). Finally the paramaters ofH1 are estimated by max-
imization of the kurtosisjKx0 j. This procedure is repeated
for a new set of parameters ofH2 until jKx0 j reaches its
maximum. We do not guarantee that this procedure yields
an absolute maximum.

4. SIMULATIONS

4.1. Kurtosis maximization

An illustrative example is proposed as follow :

The input sequence is an i.i.d. uniforme sequence (�1)
with L = 1000 symbols . In this case the kurtosis (Kx =
�2) is negative and we maximize�Kx0 . This maximiza-
tion is performed under constant energy constraint.

The two linear filters are second order transfer function

Hi =
1

1� �i1 z�1 � �i2 z�2
; (4)

with �11 = 0:4, �12 = 0:2 and�21 = 0:6, �22 = 0:3. The
nonlinear parameters are� = 5 and� = 1 (see figure 1).



We shall quantify the results of our method with a com-
mon measure of identification error which is the normalized
mean square errorEr defined by

Er =

P
L

i=1
(x0
i
� xi)

2

P
L

i=1
x2
i

: (5)

The procedure of section 3.2 is used to estimated the
parameters of the structure. Results are reported in Table 1.
Each row in Table 1 gives the results of the different steps
of our kurtosis maximization procedure. The parameters�̂21
and �̂22 are chosen, then we estimate�̂, �̂11 and �̂12 mini-
mizingK(x̂). The value ofK(x̂) and of the corresponding
Er (dB) are given column 6 and 7.

Fixed Estimated Evaluated
�̂21 �̂22 �̂ �̂11 �̂12 K(x̂) Er (dB)

0.55 0.25 0.57 0.26 0.28 -1.7119 -9.67
0.58 0.28 0.76 0.21 0.21 -1.7889 -10.64
0.6 0.3 1 0.4 0.2 -2 -246.58
0.62 0.32 0.81 0.14 0.06 -1.6609 -9.20
0.65 0.35 0.6 0.23 0.15 -1.3292 -7.87

Table 1: Estimation of�11 and�12.

We see that the kurtosis is minimum when�̂21 and �̂22
are chosen properly.

Figure 3 representsKx0(�̂21, �̂22, �̂11,�̂12,�) when�̂21 =

0:6, �̂22 = 0:3, �̂12 = 0:2, ^beta = 0:9, 0.99 or 1. We note
that the kurtosis is minimum when̂beta = 1 and�̂11 = 0:4.
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Figure 3: Kurtosis minimization :̂�11

Figure 4 representsKx0(�̂21, �̂22, �̂11,�̂12,�) when�̂21 =
0:6, �̂22 = 0:3, � = 1 and �̂11 varies from 0.3 to 0.5 with
step 0.02. The maximum of�Kx0 is obtained when the

estimation of the parameters yields the actual values of the
system parameters.
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Figure 4: Kurtosis minimization :̂�12

4.2. Effect of additive noise

So far, we have ignored the presence of additive noise in the
system. In practice, this assumption is unrealistic. We pro-
pose to study the effect of an additive noise in the structure
as shown in figure 5, where the noiseb is assume to be a
white Gaussian noiseN (0; �2

b
).
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Figure 5: Blind deconvolution model with noise perturba-
tions.

The influence of the additive noise, for different values
of �b on the performances of the method are presented in
Table 2, when̂�21 = 0:6, �̂22 = 0:3 and�̂ = 1. The signal
to noise ratio (SNR) is defined by:

SNRdB = 10 log(
�2x
�2
b

) ; (6)

The performances of this approach increase linearly with
theSNR. For a highSNR � 20 the additive noise has
no significant influence on the quality of the recovered se-
quence.



Fixed Estimated Evaluated
SNR �b �̂11 �̂12 K(x̂) Er (dB)

30 0.031 0.4 0.2 -1.9968 -29.05
25 0.056 0.4 0.2 -1.9860 -24.05
20 0.100 0.4 0.2 -1.9524 -19.06
15 0.178 0.39 0.2 -1.8509 -14.13
10 0.316 0.37 0.2 -1.5748 -9.36
5 0.562 0.3 0.2 -1.0191 -5.04

Table 2: Estimation of�11 and�12 with noise perturbations.

5. TOWARDS A THEORETICAL JUSTIFICATION
OF THE PROPOSED METHOD

The proposed method is not yet based on a sound theoretical
development, merely on a simulation. However, we may
propose the following interpretation.
We suppose that the function' is close to a linear function

'(u) = u� �(u) :

If the parameters of the linear filters are accurately estimated
while the parameters of'�1 are represented by a linear term

'�1(v0) = v0 ;

the recovered signalx0(t) will be close to the true signal
x(t). x0(t) can be expressed as a sumx0(t) = x(t) + e(t)
wheree(t) is not linearly dependant ofx(t) only. The term
e(t) in the sum is due to the presence of the filterH1: e(t)
depends on the past or the future ofx(t) and not only on
x(t). The presence ofH1 (Wiener model) is essential in the
identification process. Asx(t) is a white noise, the kurtosis
of x0(t) will be lower (in absolute value) than the kurtosis
of x(t), sincex0(t) will appear as a mixture of a white noise
and another signal that does not depend only on it: the kur-
tosis of the mixture is necessary lower than the kurtosis of
one of its components [16]. The appropriate choice of the
parameters of the nonlinear function will force to zero the
amplitude ofe(t). Consequently, this procedure will max-
imise the kurtosis of the estimated output.

6. CONCLUSION

We have proposed to use kurtosis maximization of the re-
covered sequence for blind identification of a nonlinear com-
munication channel. The model of the structure is com-
posed by a linear filter, a nonlinear static function and a
linear filter, which is an extention of the linear case. We
briefly address the problem of additive noise in the system
and that when the this noise is Gaussian the proposed ap-
proach remains usable for aSNR � 20 dB.
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