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ABSTRACT

The genome is a highly complex nonlinear control system regu-
lating cell function.  One of the primary means for regulating
cellular activity is the control of protein production.  Protein
production is controlled by the amount of mRNA expressed by
individual genes.  This level of gene expression is modulated by
protein machinery that senses conditions internal and external to
the cell.  A set of gene expression levels over time can be mod-
eled as a random time function.  The tools required to start
building an understanding of genomic regulation of expression
are those which allow one to discern the probability characteris-
tics of this random function.  Basic to such understanding is the
ability to discover how expression levels of various genes pre-
dict other expression levels, both at fixed moments in time and
through time.  Hence, genomic pathway analysis depends on the
application of nonlinear signal filters.  In the approach here,
gene expression levels can have three logical values: −1 (down-
regulated), 1 (up-regulated), 0 (invariant).  Filters are in terms
of ternary logic and are statistically optimized via conditional
probabilities.  Although recent cDNA microarray technology
permits simultaneous measurement of thousands of gene expres-
sion levels, current technology severely limits the number of
microarrays one can use to acquire data for filter design.  Con-
sequently, one is required to constrain optimization by using
small numbers of predictor genes or restricting the filter class.
The present paper gives an overview of the general paradigm for
genomic prediction and provides some early results.

1. INTRODUCTION

Estimates of the total number of genes in the human genome
range from 70,000 to more than 100,000.  As a result of the
Human Genome Project’s efforts to identify the complete com-
plement of human genes, sequences and clones for more than
1.3 million expressed sequence tagged sites (ESTs) are cur-
rently publicly available.  The sequences in the databases can be
clustered into 62,851 non-redundant clusters (genes).  This set
of gene tags may represent half or more of the human gene set.
It is obvious that in order for an organism to function, each gene
must be expressed in a specific temporal and spatial context,

thereby providing its unique function.  The ability to link these
genetic sequences to their functions has fallen far behind the
ability to collect them, as only 14% of the identified clusters
contain genes associated, even tenuously, with a known func-
tionality.

Recently, methods for carrying out genome-wide expression
studies have been described, in particular, cDNA microarrays
[1-6].  For the latter, cDNA clone inserts are robotically printed
onto a glass slide and subsequently hybridized to two differently
fluorescently labeled cDNA representations of total RNA pools
from test and reference cells, thereby allowing one to determine
the relative abundance of transcript present in the pool.  To gain
insight into a gene's functional behavior in a cell, it is necessary
to study a gene expression pattern (either in a temporal setting,
in different cellular contexts, or under various circumstances) as
it responds to the environment and to the action of other genes.
Such experiments produce much larger data sets concerning
transcriptional levels than have previously been available for
analysis.  To date, only relatively simple analysis, based on
correlation of changes, has been applied to these data sets.  As it
has become clear that the control of transcription is accom-
plished by a method utilizing a variety of inputs [7, 8], it is nec-
essary to design analytical tools that can sift expression profile
data to detect the types of multivariate influences on decision-
making operating within complex genetic networks.  This paper
discusses the general paradigm for gene expression prediction
within the context of nonlinear filtering and provides some early
results

To survey the association between genes, enough differing con-
ditions must be sampled so that the independent functioning of
different genetic networks is accessed.  The amount of sampling
requires data from numerous cDNA microarrays.  To standard-
ize expression measurements derived from different arrays, a
consistent reference sample is simultaneously hybridized to each
array with various test samples.  The expression levels are re-
ported as ratios relative to the reference sample.  Further reli-
ability can be obtained by using the variance of a large set of
“housekeeping” genes to estimate the statistical significance of
observed ratios.  An algorithm calibrates the data internally to
each microarray and statistically determines whether the data
justifies the conclusion that an expression is up-regulated or



down-regulated with 99% confidence [9].  As a first step in
carrying out nonlinear gene expression prediction on gene ex-
pression profiles, data complexity is reduced by thresholding the
changes in transcript level into ternary expression data: [−1
(down-regulated), +1 (up-regulated), or 0 (invariant)].

From a statistical perspective, the mechanism of the association
is not a factor, only the ability to predict the target level from
the predictor levels.  The predictor genes may be upstream or
downstream from the target gene in the actual genetic network,
some may be upstream and some downstream, or they may be
distributed about the genetic network in such a way that their
relation to the target gene is based on chains of interaction of
various intermediate genes.  Thus, whatever the relationship of
the predicting genes to the predicted, if knowledge of their
states allows us to better predict the expression level of the
target gene, then we infer there is some relationship — the bet-
ter the prediction, the stronger the relation.  Given that a goal of
human genomics research is to begin elucidating the function of
newly discovered genes, the ability of the method to find con-
nections independent of exact knowledge of all of the compo-
nents of a gene network or even of the exact form of their inter-
action is a key strength of the method.

2. GENE EXPRESSION AS A RANDOM

FUNCTION

The mRNA being measured by a microarray comes from a large
collection of cells within a paticular cell line and therefore the
expression level represents an expression average across the cell
line at a moment in time.  If we let X = (x1, x2, …, xn) denote
the vector of gene expression levels on a microarray, as a func-
tion of time t, X(t) is a vector random function.  Genetic
changes over time concern the random process X(t) as a random
function of t; questions regarding the interrelation between
genes at a given moment of time concern X(t0) for a fixed t0.
Comparison of two cell lines, say tumerogenic and nontumero-
genic, involves two random processes X1(t) and X2(t), and their
cross probabilistic characteristics.  For instance, if one is only
concerned with their second-order characteristics, then their
cross-covariance function is of interest.

The genome is not a closed system.  It is affected by intracellu-
lar activity, which in turn is affected by external factors.  At a
very general level, we might represent the situation by a pair
(X(t), Z(t)), where Z(t) is a vector random function of time-
dependent random variables external to the genome, either cel-
lular or otherwise.  In any practical situation, Z(t) will only
include variables that can be observed, are measurable, and are
of interest.  In a laboratory setting, Z(t) might be a deterministic
function composed of one or two components decided upon by
the experimenter.  For instance, if we are interested in cellular
reaction to heat shock at time t0, then we might let Z(t) be the
deterministic function having unit-impulse at t0 and being null
otherwise.  The effect of the heat shock after a time increment
∆t is described by the transition X(t0) → X(t1), where t1 = t0 +
∆t.  Had we a complete stochastic model of the biological

mechanisms set into motion by heat shock and were we able to
nullify other external effects, then we could fully describe this
transition by the joint probability distribution for X(t0) and X(t1)

FX(x0, x1; t0, t1) = ))(,)(( 1100 xXxX ≤≤ ttP

More generally, we might only know that one of several ran-
domly selected external conditions has been imposed, in which
case the transition X(t0) → X(t1) is still our concern; however,
since Z(t) is now a random function, FX(x0, x1; t0, t1) is a mar-
ginal distribution relative to the joint probability distribution
FX,Z((x0, z0), (x1, z1); t0, t1).  At present, we are a long way from
full characterization and are interested in partial characteriza-
tion of FX(x0, x1; t0, t1) and in using partial characterization to
obtain insight into genomic signaling pathways.

As with any signal processing setting, the most critical problem
is prediction of X1 = X(t1) from observation of X0 = X(t0).
Relative to mean-square error (MSE), the best predictor is the
conditional expectation E[X1|X0].  Given the quantized setting,
we can proceed in the manner used for the design of morpho-
logical operators [10-12].  The degree to which a designed pre-
dictor approximates the optimal predictor depends on the train-
ing procedure and the sample size.  Even for a relatively small
number of predictor genes, good design requires a data set suffi-
ciently large to obtain precise estimates of the 3n conditional
expectations E[X1|x0].  However, we typically have a small
number of microarrays, less than 100.  The error, εapp, of a de-
signed approximation of the optimal predictor is a sum of two
errors, εapp = εopt + εdes, where εopt is the error of the optimal
predictor and εdes is the design error resulting from estimating
the predictor from the data. As N → ∞, εdes(N) → 0, but for the
small numbers used in practice, εdes is significant [13].

The data problem can be mitigated if, rather than estimating the
best predictor from a too small data set, we estimate the best
predictor from a constrained set of predictors.  Its theoretical
error will exceed that of the best unconstrained predictor; how-
ever, it can be designed more precisely from the data.  The er-
ror, εapp,C, of a designed approximation of the best predictor
satisfying a constraint C is the sum of two errors, εapp,C = εopt,C +
εdes,C, where εopt,C is the error of the optimal predictor and εdes,C

is the design error.  The dilemma of finding good predictors of
gene expression levels is threefold: (1) εopt < εopt,C and εdes >
εdes,C; (2) εopt is decreased by using more predictor genes but εdes

increases with more predictor genes; (3) the stronger the con-
straint, the more εdes,C is reduced, but at the cost of increasing
εopt,C.  If we had access to an unlimited number of microarrays,
then we could make both εdes and εdes,C arbitrarily small and
have εapp ≈ εopt < εopt,C ≈ εapp,C. In our low-replication environ-
ment, εdes can greatly exceed εdes,C.  Consequently, the error of
the designed constrained predictor can be significantly smaller
than that of the designed unconstrained filter.  Choosing an
appropriately strong constraint is one of the key problems of
nonlinear filter theory [14].

To discover predictive relationships in the gene set, we let each
gene be the target and design predictors for each combination of
K or less predictor genes.  If a designed predictor yields a low
error, then we conclude that the predictor genes possess a pre-



dictive relation with the target.  For design and testing, the total
microarray sample is randomly split into M training sets and N −
M test sets.  The predictor is designed on the M training data
sets and then applied to the N − M test sets to obtain a test error,
which serves as an estimate of the population error for the de-
signed predictor.  To obtain good error estimates, this procedure
is repeated 256 times and the estimated error, εtest, is taken as
the average of these errors.  For the optimal nonlinear predictor,
εtest serves as an estimate of εapp; for an optimal constrained
predictor, εtest, which we write as εtest,C, estimates εapp,C.  The
errors for the optimal unconstrained and constrained predictors
are εopt = εtest − εdes and εopt,C = εtest,C − εdes,C, respectively.  Since
we do not know εdes and εdes,C, we take εtest and εtest,C as meas-
ures of goodness for the designed unconstrained and constrained
nonlinear predictors, respectively.  We must keep in mind that
εdes always exceeds, and can greatly exceed, εdes,C.  Hence, if εtest

is close to εtest,C, then it is reasonable to expect that the optimal
unconstrained nonlinear predictor significantly outperforms the
optimal constrained predictor, meaning that εopt is significantly
less than εopt,C.  Nonetheless, the only actual empirical measures
of performance we have are εtest and εtest,C, and these are based
on the 256 twenty-training/ten-test data splits.

We use the class of ternary perceptrons as our set of constrained
predictors.  For predicting a target Y from a collection of pre-
dictor expressions X1, X2, ..., Xn, a ternary peceptron is of the
form

 Ypred = T(a1X1 + a2X2 + � + anXn + b) 

where T(z) = −1 if z < −0.5, T(z) = 0 if −0.5 ≤ z ≤ 0.5, and T(z)
= +1 if z > 0.5.  Perceptron design requires estimating the coef-
ficients a1, a2,..., an, and b from microarray data, and we have
done this using a stochastic training algorithm [15].

Whether using constrained or unconstrained predictors, for a
target expression Y, we take the MSE of Ypred and normalize this
MSE by dividing by the MSE of T(µY), which is the error re-
sulting from taking the threshold of the mean of Y as the pre-
dictor of Y.  This yields the normalized mean-square error
NMSE[Ypred].  We measure the degree of prediction by
NMSE[Ypred] or, equivalently, by

R2 = 
)]([

][)]([ pred

Y

Y

TMSE

YMSETMSE

µ
µ −

 = 1 − NMSE[Ypred]

Since NMSE[Ypred] ≤ 1, 0 ≤ R2 ≤ 1.  The closer NMSE[Ypred] is to
0, the better Y is predicted, and the more Y is determined by X1,
X2,..., Xn via the predictor.  We use the NMSE for both percep-
tron and unconstrained nonlinear predictors to measure the
strength of the predictive relation between a set of predictor
genes and a target gene.

3. EXPERIMENTAL RESULTS

In our first study using these methods, we have examined pre-
dictive relationships for a certain set of genes in the context of
their responsiveness to genotoxic stresses [15].  We used data

from a microarray study surveying transcription of 1238 ESTs
during the response of a myeloid line to ionizing radiation [16].
In the study, 30 genes not previously known to participate in
response to IR were found to be responsive.  To further charac-
terize the responsiveness of these genes to genotoxic stresses,
the responsiveness of a subset of nine of them was examined by
blot assays in 12 cell lines stimulating with ionizing radiation, a
chemical mutagen (methyl methane sulfonate, MMS), or ultra-
violet radiation.  The ternary expression levels for 12 genes and
their 3 external experimental conditions are given in Table 1.
For experimental methods and the full discussion related to
Table 1, see Ref. [16]. In this paper we will not go into great
detail on the results of our analysis, but will focus instead on a
few results of interest relative to nonlinear signal processing.

Table 1.

Genes Condition

Cell-line

R
C

H
1

B
C

L3

F
R

A
1

R
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L-
B

A
T

F
3

IA
P

-1

P
C

-1

M
B

P
-1

S
S

A
T

M
D

M
2

P
21

P
53

IR M
M

S

U
V

ML-1 -1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
ML-1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0
Molt4 -1 0 0 1 1 0 1 0 0 1 1 1 1 0 0
Molt4 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0

SR -1 0 0 1 1 1 1 1 0 1 1 1 1 0 0
SR 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0

A549 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
A549 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
A549 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1

MCF7 -1 0 1 1 0 0 0 0 0 1 1 1 1 0 0
MCF7 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0
MCF7 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1
RKO 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0
RKO 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
RKO 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1

CCRF-CEM -1 1 1 1 1 0 1 0 0 0 0 -1 1 0 0
CCRF-CEM 0 0 0 0 1 0 0 0 0 0 0 -1 0 1 0

HL60 -1 1 0 1 1 0 1 0 1 0 1 -1 1 0 0
HL60 0 0 1 0 1 0 0 0 0 1 1 -1 0 1 0
K562 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0
K562 0 0 0 0 1 0 0 0 0 0 0 -1 0 1 0

H1299 0 0 0 1 0 0 1 0 0 0 0 -1 1 0 0
H1299 0 0 0 0 1 0 0 0 0 0 1 -1 0 1 0
H1299 0 0 0 0 1 0 1 0 0 0 1 -1 0 0 1

RKO/E6 -1 1 0 1 0 1 1 0 0 0 0 -1 1 0 0
RKO/E6 -1 0 0 0 1 0 0 0 0 0 1 -1 0 1 0
RKO/E6 -1 0 0 0 1 0 0 0 0 0 1 -1 0 0 1

T47D 0 0 0 1 0 0 0 0 0 0 1 -1 1 0 0
T47D 0 0 0 0 1 0 0 0 0 0 1 -1 0 1 0
T47D 0 0 0 0 1 0 0 0 0 0 1 -1 0 0 1

From a filter-design perspective, the most interesting aspect of
the problem is the large number of random variables and the
extreme paucity of data.  Our methodology is designed to dis-
cover nonlinear predictive relations, rather than design specific
optimal filters.  Each time the data is split between training and
testing, a best filter is determined and, as the procedure is re-
peated 256 times, many different best filters arise.  For a given



gene-expression predictor set and target, εtest gives the average
error and εtest provides a coefficient of determination, the provi-
sion of which is our main intent.  Should we wish to estimate
the optimal filter from the full data set, then we would use all of
the microarrays for training, but this would leave no way to
estimate filter error.

To the extent that a perceptron provides an approximation to a
linear filter, if the optimal predictor is a perceptron, one might
conclude that there is a somewhat linear relation between the
predictor variables and the target.  Because εdes-per is often sub-
stantially less than εdes, it is often the case that εtest-per < εtest even
though εopt-per > εopt.  For the genomic-stress-response data, for
predictor genes IAP-1, PC-1, and SSAT, and target gene BCL3,
the test errors are εtest-per = 0.336 and εtest = 0.666, which means
that εdes − εdes-per ≥ 0.330.  Nevertheless, the inherent nonlinear-
ity of genomic regulation can be sufficiently strong to overcome
the estimation-error differential.  For target BCL3, εtest-per =
0.826 and εtest = 0.493 for predictors RCH1, PC-1, and p53.  In
another striking example, gene REL-B is predicted with εtest-per =
0.472 and εtest = 0.397 using the predictor genes BCL3 and
ATF3, in conjunction with external application of ionizing ra-
diation.

p53 p21

MDM2

0.8050.612

Figure 1.

For presentation, prediction results are shown as arrow plots,
with the target gene at the left, and the chained predictor plotted
to the right.  The NMSE achieved by the adjoining a predictor
gene is placed on the arrow preceding it.  Many predictions
produced by perceptrons confirm biological expectation.  For
example, it is known that p53 is influential, but not determina-
tive of the up regulation of both p21 and MDM2.  Thus, some
level of prediction is possible by a combination of these two
genes.  This expectation is clearly met, as shown in Fig. 1.

REL-B BCL3

IAP-1

0.5900.546

MBP-1

0.538

PC-1
0.417

0.412

Figure 2.

For a set of newly found IR responsive genes [REL-B, RCH1,
PC1, MBP-1, BCL3, IAP-1], perceptron prediction indicates
their expression behaviors are interrelated.  For example, REL-
B is known to be a modifier of NFκB, a transcription activator
commonly induced in response to genotoxic shock.  As shown in
the prediction tree in Fig. 2, it is linked to MBP-1 (a zinc finger

protein that binds to a variety of enhancer elements), PC1 (a
subtilisin-like proprotein processing enzyme found to be fre-
quently highly expressed in carcinoid tumors), BCL3 (a B-cell
lymphoma 3 encoded protein that is a putative transcription
activating factor whose expression is mitogenically stimulated),
and IAP-1 (an inhibitor of cellular apoptosis).  It is known that
these genes do not constitute a simple functional pathway.
What can be seen to be common in the transcription pattern of
these proteins is the stimulus, ionizing radiation, to which they
respond directly or indirectly.  This effect is clear if the experi-
mental conditions (IR, MMS and UV) are included into the set
of predictors.  The results for REL-B are given in Fig. 3, where
the IR condition becomes the sole source of prediction.  Addi-
tions of further genes do not increase the accuracy of prediction
significantly.

REL-B IR

SSAT

0.2830.267

Figure 3.

4. CONCLUSION

Viewing the genome as a control system, receiving and giving
signals both internally and externally, it is natural to model gene
expression as a vector random function over time.  Quantization
according to whether a gene is up-regulated, down-regulated, or
invariant leads at once to nonlinear digital signal processing as
the appropriate framework to view gene expression prediction.
Hence, we apply the methods of statistical filter optimization,
and these can be applied in the context of computational
mathematical morphology.  This paper has presented the
framework and demonstrated the statistical methodology for
genes undergoing genotoxic stress.
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