MAPPING IMAGE RESTORATION TO A GRAPH PROBLEM
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ABSTRACT

We propose a graph optimization method for the restoration of
gray-scale images. We consider an arbitrary noise model for each
pixel location. We also consider a smooth constraint where the
potentials between neighbor pixels are convex functionals. We
show how to map this problem to a directed flow graph. Then, a
global optimal solution is obtained via the use of the maximum-
flow algorithm. The algorithm runs in a polynomial time with re-
spect to the size of the image.

1. INTRODUCTION

In image restoration, a “true” image is corrupted by noise and the
goal is to recover the “true” image from the noisy one. The mod-
eling needs to remove the noise without removing the intensity
discontinuities of an image, i.e., one can not simply remove the
high frequency component of the image signal. In the segmenta-
tion problem, one seek a map from the set of pixels to a small set
of levels such that each connected component of the set of pixels
with the same level forms a relatively large and “meaningful” re-
gion.

There are various approaches and methods to these problems. We
focus on a variational approach, where freedom is given to model
geometrical properties through the potential between pixels. An
usual difficulty of variational approaches are the lack of guaran-
teed and efficient methods to find the solution.

For a class of convex potentials between neighbor pixels and ar-
bitrary noise model at each pixel location, we study a guaranteed
and efficient algorithm. The idea is to map the problem to a
minimum-cut problem on a directed graph, which can be solved
globally in a polynomial time with a maximum-flow algorithm.

1.1 Background

A variational framework for image restoration and segmentation
that first clearly address the problem of removing the noise pre-
serving the discontinuities is given by Blake and Zisserman [1];
and Geman and Geman [8].

A limitation with both work is the lack of guaranteed and effi-
cient optimization method. In [8] they used the guaranteed but
very slow simulated annealing method while in [1] they used the
very slow (and not guaranteed) GNC method. Various work to
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speed up these computations, e.g., [7] and related EM methods,
lacked guaranteed methods.

For binary images, Greig, Porteous, and Seheult [9][10], study-
ing the Geman and Geman's model, provided an efficient and
optimal solution based on the maximum flow algorithm. They
compared experimentally the two methods (simulated annealing
versus the maximum-flow algorithm) to conclude that the guar-
anteed method were capable of achieving better image restora-
tion. In particular they noticed that the simulated annealing
method tended to over-smooth the noisy image.

In order to extend this work to gray-scale images (more than two
levels), Ferrari, Frigessi, and de Sa [6] have shown that for arbi-
trary potential this problem is in general NP-hard.

More recently, Roy and Cox [14] have considered the use of
network-flow algorithms (in an undirected graph) for computer
stereo vision matching. Boykov, Veksle, and Zabih [2] used an
approximate multiway-cut algorithm (in an undirected graph) to
solve it approximately for a specific type of potential function
that models discontinuities. The authors [11][12] have intro-
duced the use of a directed graph maximum-flow for binocular
symmetric stereo and studied image segmentation using network
flow algorithms.

Here we focus on the image restoration problem, clearly stating
the set of potentials where the maximum-flow algorithm in a di-
rected graph can be applied. We show the experimental value of
this approach.

2. IMAGE RESTORATION

Let the input g to be an image corrupted by noise. We can typi-
cally raster scan an image and so g is represented by a vector in
an N*-dimensional vector space (for a square image of size NxN.)
Then, g, (k=1,"", N”) represents the gray-scale value at pixel %.
The variational formulation of image restoration tries to find an
output image / that minimizes the energy:

NZ
E(f)=Z{G(fk—gk)+ ZF(fk—f,)}, (1)
k=1 JENk
where G is an arbitrary noise model function and F is a potential.
The role of F'is to encourage the output f to be smooth, removing
noise. However, image discontinuities need to be preserved.
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Figure 1. A directed graph. A cut of the graph can be
thought of as a surface that separates the two parts. The op-
timal cut is the one that minimizes the sum of the capacities
associated to the cut edges. Each node has six outgoing
edges (except for boundary).

Therefore, very large gradient of f should not be penalized. For
our method to be applicable, F' must be a convex function, as
discussed in section 4. Among convex functions, the linear func-
tion on the magnitude of the change (i.e., F/(x)=gx|) is most
preferable as it least penalizes large discontinuities.

3. GRAPH FORMULATION

In this section, we explain the segmentation assignment archi-
tecture that utilizes the maximum-flow algorithm to obtain the
globally optimal assignment, with respect to the energy (1). We
assume the gray-scale value ranges from 0 to 255.

3.1 The Directed Graph

We devise a directed graph and let a cut represent the output
function k+> f; so that the minimum cut corresponds to the op-
timal output. Let M be the set of all possible local value, or /y-
pothesis, i.e.,
M={(m.k) | me{0, ... 255}, ke {1,.. N} }.

We define a directed graph G = (V. E) as follows:

V={ | (m, kye M}yUls,t}

E= ED UEC UEP.
In addition to the source s and the sink #, the graph has a vertex
U,y for each hypothesis (m, k)e M. The set E of edges is divided
into subsets Ep, Ec, and Ep, each one having a capacity with a

precise meaning in terms of the model (1), which we will explain
in the following subsections.

We denote a directed edge from vertex u to vertex v as (u,v).
Each edge (».v) has a nonnegative capacity c(u,v). A cut of Gis a
partition of V into S and 7=\ S such that s € S and ¢t € T (see
Figure 1). We mean by a cut of an edge («,v) that ue Sand ve T.

1 2 3 4 N2

Figure 2. Data edges are depicted as black arrows. The cut
here represents the output image value f,=0, f,=0, f;=1,
fa=1, /y2_1=2, and fy2=0. Penalty edges are represented by
gray arrows. By crossing consecutive penalty capacities, the
cost is added linearly, accounting for the function F(x)=x|.
Constraint edges are depicted as dotted arrows. They ensure
that the cut represents a function. These edges cannot be cut,
preventing the cut from “going back.”

This is the only case that the cost c(u,v) of the edge contributes to
the total cost X, _ 5 , . y c(u,v). We note that if the cut is through
the edge (u,v) with u € T and v € S, the cost is ¢(v,u), which in
general is different from c(u,v). It is well known that by solving a
maximum-flow problem one can obtain a minimum cut, a cut that
minimizes the total cost over all cuts. (See [3].) Because of the
way we define the capacity of each edge, the resulting minimum
cut exactly represents the output image that minimizes the energy
(1). To see this, let us now analyze the different set of edges Ep,
Ec, and Ep.

3.2 Data Edges

From each vertex u,; there is one outgoing data edge:
(ks Ui 1y) 1f & < 255, or (. t) otherwise. It has a capacity
G(m —g,). Thus, the capacities associated to these edges contrib-
ute to account for the first term of (1). We denote the set of data
edges by Ep. If a data edge originating from u,, is cut, we inter-
pret that the output function f has gray-scale value m at pixel k.
Figure 2 shows the nodes and data edges. The cut shown repre-
sents the output image value f,=0, /,=0, /;=1, f,=1, fy2_,=2, and
Jy2=0. Also, edges (s, uy;) are added for all k with an infinite ca-
pacity. Note these edges are actually unnecessary and s and first
layer vertices {uy | k=1 ... N*} can be merged to one vertex,
but for clarity are shown thus.

3.3 Penalty Edges

Penalty edges are defined as



EP: {(Mn1k> Mmj) | (m, k)EM,JENk}

These edges are for paying for discontinuities (region bounda-
ries). Edges in Ep are cut whenever a change in the gray-scale
value occurs. For instance, if the output image has a gray value a
at pixel £ and a +2 at pixel k£ +1, two edges will be cut, namely
(Uar1) (k1) Varnn) A0 U2y (hr1)s Viarn)- We set the capacity to
be some constant value. By crossing consecutive penalty capaci-
ties the cost is added linearly, yielding a cost function F(x)=1x].
While we have used a simple connectivity and capacity setting
here, we could seek more general connectivity of the form

Ep={ o 1) | (m. ). (L) e M jEN],
with arbitrary capacity.

By setting the capacity for these edges, we control the potential
function F(x) between levels. We prove in the next section that
for any general form of connectivity graph, where maximum-
flow can be applied, the edge penalty must yield convex potential
function F(x). This follows from the requirement that the ca-
pacities must be nonnegative. Conversely, it can be shown that
any convex function F(x) can be used.

3.4 Constraint Edges

Constraint edges ensure that the cut expresses a function, i.e.,
that each pixel is assigned only one gray-scale value.

E‘C= {(umks u(mfl)k) | (ma k)GM, m> l}

The capacity of each constraint edge is set to infinity. Therefore,
any cut with a finite total flow cannot cut these edges. Note that,
because the edges have directions, a constraint edge prevents
only one of two ways to cut them. In Figure 2, constraint edges
are depicted as dashed arrows, and none is cut.

4. ADMISSIBLE POTENTIAL

Since a maximum-flow algorithm runs in a polynomial time, the
formulation gives a method to find a global minimum of energy
(1). Yet the energy (1) is in general NP-hard. As one would ex-
pect from this fact, the formulation has a limitation on the poten-
tial F(x):

The potential function F(x) must be convex.

Proof. Each node u,, can in general have as a neighbor any node
in column over a neighboring pixel, i.e.,

¢ (U ) #0 = jEN;

The potential function F(x), at pixel k, is the result of a cut
through various edges bridging nodes u,, and u;, where jeNj.
Let us focus on the bridge between pixel k and j. In the directed
graph, this cut goes through a column of hypotheses separating
these two pixels £ and j. Given the gray-scale value change from
m at pixel k to / at pixel j, we have the cost as follows:

mn M

. M /
F(m>l)= Z Zc(um'k>ul"/)+ Z Zc(ulf/>un1'k) (2)

m'=0['=l+1 m'=m+11'=0

where M is the maximum gray-scale value. The potential depends
only on the difference of m and /. Hence we have
F(x)=F(m,x—m), settingx=m —[.

To show the second derivative of F(x) is non-negative, we take

S2F(x)
&

{F(x+1) = Fx)}={F(x) - F(x = 1)}

=Fm,I-1)-Fm,D)—Fm-1,1-1)+ F(m-11),
where we used the invariance of /" under a translation of m and /
with x =m — [ fixed. After using (2) and simplifying the summa-
tion, we get

S5 F(x)
&2

Since all edge capacities are non-negative, the discontinuity pen-

= C(umk’ ulj)+ C(ulj’ umk) .

alty cost F(x) must be a convex function, i.e., second derivative is
always nonnegative.

5. RESULT

We implemented the architecture explained above. For maxi-
mum-flow algorithm we used standard push-relabel method with
global relabeling [5].

Figure 3 shows three restoration examples. Figure 4 shows a
comparison of three restorations of images with three noise lev-
els.
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Figure 3. Each row shows an example of restoration; original image (left column), noisy image (middle), and restored image (right).



Figure 4. Comparison of three restoration of images with three noise levels (original image is shown in the bottom left of Figure 3.)
Each column shows input (top row) and restoration using three smoothing constant x°s; =6 (second row), x=20 (third row), and
1=40 (bottom), where F'(x)=p|x|.



