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ABSTRACT
In this paper, we propose an �-stable 2D ex-

tension of the 1D fractional Gaussian noise.
The considered model exhibits long-range depen-
dence properties, while its stability index allows
us to control the degree of spikyness of the synthe-
sized fields. A least square method for the estima-
tion of the three parameters of this model is also
described and its performances are evaluated by a
Monte Carlo study.

1. INTRODUCTION

Stable processes have turned out to be good mod-
els for many impulsive signals and noises, when
the probability distributions of the highly variable
data have “heavy” tails. These distributions have
infinite variance and undefined higher-order mo-
ments, but it was pointed out in [8] that many sig-
nal processing algorithms based on second-order
statistics can be transposed to fractional lower-
order moments.

In the context of linear modeling, the main ad-
vantage of stable distributions is to allow us to de-
fine non-Gaussian processes whose probability
laws are easily deduced from those of their driving
noise. In this work, we will be interested in the de-
sign of a specific class of 2D discrete-space pro-
cesses with stable distributions. The considered

models have long range dependence properties and,
consequently, they could provide interesting alter-
natives to image modeling techniques based on the
2D fractional Brownian motion.

The outline of this paper is as follows. In Sec-
tion 2 we recall some useful facts on stable dis-
tributions. Conditions for the existence of linear
2D stable processes are then given in Section 3.
Section 4 introduces a new model for stable fields
which, in some sense, is the bidimensional equiv-
alent of 1D FARIMA(0; d; 0) stable processes. In
Section 5, we present a simple method for identi-
fying this model and, in Section 6, we provide sim-
ulation examples to illustrate the effectiveness of
this approach.

2. STABLE DISTRIBUTIONS

The family of stable distributions [7] is interesting,
since linear transforms preserve the distribution of
any linear combination of independent, identically
distributed �-stable random variables. This prop-
erty is directly related to the definition of stable
random variables: a random vriable has a stable
law if for all positive numbers A and B, there ex-
ists a positive numberC and a real numberD such
that



AX1 +BX2
d
= CX +D;

where X1 and X2 are independent random vari-
ables with the same distribution as X .

Another fundamental result is the generalized
central limit theorem [5], which represents an al-
ternative definition of a stable law: a random vari-
able X has a stable law if and only if there exists a
sequence of independently, identically distributed
random variables (Yi)i2N and sequences of posi-
tive numbers (dn)n2Zand real numbers (an)n2Z
such that

Y1 + Y2 + : : :+ Yn
dn

+ an
d
) X;

where the symbol
d
) denotes the convergence in

distribution.
There does not exist explicit forms for most of

the probability densities of stable variables. Ex-
ceptions are the Gaussian distribution (� = 2),
the Cauchy distribution (� = 1) and the Lévy dis-
tribution (� = 1=2). Hence, an important way
to characterize an �-stable law is by means of its
characteristic function which has the following
form, in the symmetric case:

E
�
e{�X

	
= exp

�
���j�j�

�
where� 2 (0; 2] and � � 0 are the two parameters
of the symmetric �-stable (S�S) law.

We note X � S�(�; 0; 0). The parameters �
and � of this distribution are called, respectively,
the index of stability and the scale parameter. For
Gaussian random variable (� = 2), � is propor-
tional to the standard deviation while the mean is
zero. When � > 1, the scale parameter induces a
norm kXk� = � on a vector space of jointly S�S
random variables.

One of the major difficulties encountered when
considering stable random variables is the impos-
sibility of defining the variance and, when � � 1,
even the mean. More precisely, if we have a ran-
dom variable X � S� (�; 0; 0), where 0 < � < 2,

then

EjXjp <1 as 0 < p < �;

EjXjp =1 as p � �:

3. CONDITIONS FOR THE EXISTENCE
OF LINEAR STABLE RANDOM FIELDS

In the sequel, we will be concerned with two di-
mensional linear stable fields given by

un;m =

1X
k=�1

1X
l=�1

hk;lwn�k;m�l (1)

where (wn;m)(n;m)2Z2 are i.i.d. S�S random vari-
ables with scale parameter �w > 0. As infinite
summations are involved in the above expression,
the existence of un;m needs to be studied more pre-
cisely. It can be shown ([7]) that the series in (1)
converges absolutely almost surely if and only if

1X
k=�1

1X
l=�1

jhk;lj
� <1; when 0 < � < 1

1X
k=�1

1X
l=�1

jhk;lj
���lnmin

�
jhk;lj�w;

1

2

���� <1;

when � = 1
1X

k=�1

1X
l=�1

jhk;lj <1; when � > 1:

Furthermore, when � > 1, a necessary and
sufficient condition for the series defining un;m to
be convergent in the sense of the norm k � k� (or
equivalently, in the Lp sense if p < �) is:

1X
k=�1

1X
l=�1

jhk;lj
� <1: (2)

Note that this condition reduces to

(hk;l)(k;l)2Z2 2 `2(Z2)

when (wn;m)(n;m)2Z2 is a zero-mean white Gaussian
noise.



When one of the above existence conditions is
satisfied, the filtered random fieldun;m is S�S with
scale parameter

�u = �w

� 1X
k=�1

1X
l=�1

jhk;lj
�
�1=�

:

4. 2D FRACTIONAL �-STABLE
PROCESSES

Our objective is now to define a 2D discrete-space
process having long range dependence properties.

We recall that, in the 1D Gaussian case, such
a process un is provided by an FARIMA(0; d; 0)
with d 2 R+ [1], which satisfies:

�
1 � q�1

�d
un = wn

wherewn is a zero-mean white Gaussian noise with
variance 22d�2w and q�1un = un�1: As (1 � q�1)

is a discrete-time derivation operator, (1 � q�1)
d

represents a discrete-time fractional derivation of
order d(2 (0; 1=2)). The power spectrum density
of the process is given by

S(!) =
�2w���sin !
2

���2d
and consequently, this random process can be view-
ed as the ouput of a linear filter with frequency re-
sponse j sin(!=2)j�d driven by a white Gaussian
noise. Note that the long range dependence behav-
iour is caused by the divergence of the frequency
response at ! = 0.

By analogy, we define a 2D fractional stable
process un;m as the output of a bidimensional filter
with frequency response

Hd(!x; !y) =
1�

sin2
!x
2

+ sin2
!y
2

�d (3)

whose input is an S�S iid sequencewn;m with scale
parameter �w. When d < 1, Hd belongs to

L1([��; �]2) and it can be proved that the impulse
response hk;l of the filter is such that

hk;l = O((k2 + l2)d�1)

when k2 + l2 !1. We deduce that, for a > 0,X
(k;l)2Z2

jhk;lj
a <1

if d < 1 � 1=a. As the long dependence prop-
erty is desired (d > 0), the conditions stated in the
previous section show that the existence of un;m is
guaranteed only if � > 1. In this case, the domain
of validity of d is the interval (0; 1 � 1=�). Note
that this result is consistent with both those exist-
ing for 1D stable FARIMA processes and those re-
cently established for 2D Gaussian processes with
long range dependence [3, 4].

5. ESTIMATION OF THE PARAMETERS

Let un;m be an N � N fractional field as defined
in the previous section and let wn;m be the asso-
ciated driving noise. By computing the 2D DCT
of (un;m)0�n;m�N and (wn;m)0�n;m�N , we obtain
S�S fields

�
UN
k;l

�
0�k;l�N

and
�
WN

k;l

�
0�k;l�N

. The
DCT allows us to realize a frequency analysis of
the filtering relation existing between un;m and
wn;m. Its advantage over the discrete Fourier trans-
form is to generate real transformed coefficients
whose probability distribution are easier to char-
acterize.

More precisely, WN
k;l is an S�S random vari-

able with scale parameter

�WN
k;l

=�w

 
N�1X
n=0

jC(k; n)j�

!1=�

�

 
N�1X
m=0

jC(l;m)j�

!1=�

(4)

where

C(k; n) =

r
2� �(k)

N
cos

�
�k(n+ 1=2)

N

�
:



Furthermore, by using the fact that Hd is real, it
can be shown that

UN
k;l

WN
k;l

�
N!1

Hd (!k;N ; !l;N)

with !k;N = �k=N . This yields:
�UN

k;l

�WN
k;l

�
N!1

Hd (!k;N ; !l;N) : (5)

Besides, asUN
k;l is a S�S random variable, log jUN

k;lj
is a second order random variable [8] with mean

E
�
log jUN

k;lj
	
= CE

�
1

�
� 1

�
+ log �UN

k;l
(6)

where CE is the Euler’s constant. By combining
relations (3), (4), (5) and (6), we obtain

E
�
log jUN

k;lj
	

�
N!1

KN (�) + log �w

� d log
�
sin2(!k;N ) + sin2(!l;N)

�
where KN (�) is a constant depending on the sta-
bility index. The above relation suggests the use
of a linear regression method for the estimation of
log �w and d.

Interestingly, in the case� = 2, this least square
approach is close to the log-periodogram method
[2, 4] often used to identify Gaussian fractional
models.

Note that,in this approach, the value of � has
been assumed to be known. When � is unknown,
it can be estimated using classical methods. In par-
ticular, the sample characteristic function method
[8] provides a simple estimation of �.

6. EXPERIMENTAL RESULTS

In Figs. 1 and 2-3, two 256�256 realizations of
fractional stable fields are shown.

In order to evaluate the performances of the
identification method proposed in the previous sec-
tion, a Monte Carlo study has been realized for dif-
ferent parameter values of the synthesized fields
(see Table 1). We observe the overall good per-
formances for the estimation of � and d. We note
however that the variance of estimation of log �w
tends to increase as � decreases.
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Par. � log �w d

Values 2 0 0.4
Est. mean 1.9946 -0.0161 0.3964

std 0.0077 0.0219 0.0048

Values 1.8 0 0.4
Est. mean 1.8026 0.0120 0.3970

std 0.0517 0.2119 0.0120

Values 1.8 0 0.2
Est. mean 1.7999 0.0097 0.1984

std 0.0118 0.2862 0.0141

Values 1.7 0 0.4
Est. mean 1.7063 0.0266 0.3964

std 0.0701 0.2948 0.0145

Table 1: Performances of the proposed estimation
method (500 realizations of 256�256 field).

Figure 1: A realization of the proposed fractional
model in the Gaussian case (� = 2, d = 0:4).

Figure 2: A realization of the proposed fractional
model (� = 1:8, d = 0:4).

Figure 3: Same image as in Fig. 2 shown in log-
scales.


