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ABSTRACT

In this paper, we propose an a-stable 2D ex-
tenson of the 1D fractional Gaussian noise.
The considered model exhibits long-range depen-
dence properties, while its stability index allows
usto control thedegree of spikyness of the synthe-
sizedfields. A least square method for the estima-
tion of the three parameters of this model is also
described and its performances are evaluated by a
Monte Carlo study.

1. INTRODUCTION

Stable processes have turned out to be good mod-
els for many impulsive signals and noises, when
the probability distributions of the highly variable
data have “heavy” tails. These distributions have
infinite variance and undefined higher-order mo-
ments, but it was pointed out in [8] that many sig-
nal processing algorithms based on second-order
statistics can be transposed to fractional lower-
order moments.

In the context of linear modeling, the main ad-
vantage of stable distributionsisto alow usto de-
fine non-Gaussian processes whose probability
lavsareeasily deduced fromthose of their driving
noise. Inthiswork, wewill beinterested in the de-
sign of a specific class of 2D discrete-space pro-
cesses with stable distributions. The considered
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model shavelong range dependence propertiesand,
consequently, they could provide interesting alter-

nativesto image modeling techniquesbased on the

2D fractional Brownian motion.

The outline of this paper isasfollows. In Sec-
tion 2 we recall some useful facts on stable dis-
tributions. Conditions for the existence of linear
2D stable processes are then given in Section 3.
Section 4 introduces a new model for stable fields
which, in some sense, isthe bidimensional equiv-
aent of 1D FARIMA(0, d, 0) stable processes. In
Section 5, we present a ssmple method for identi-
fyingthismodel and, in Section 6, we providesim-
ulation examples to illustrate the effectiveness of
this approach.

2. STABLE DISTRIBUTIONS

Thefamily of stabledistributions[7] isinteresting,
sincelinear transforms preserve the distribution of
any linear combination of independent, identically
distributed «-stable random variables. This prop-
erty is directly related to the definition of stable
random variables. arandom vriable has a stable
law if for all positive numbers A and B, there ex-
istsapositive number €' and areal number D such
that



AX,+BX, 20X + D,

where X; and X, are independent random vari-
ables with the same distribution as X'.

Another fundamental result is the generalized
central limit theorem [5], which represents an al-
ternative definition of astablelaw: arandom vari-
able X hasadtablelaw if and only if thereexistsa
sequence of independently, identically distributed
random variables (Y), ., and sequences of posi-
tive numbers (d.,),,., and rea numbers (a,)
such that

neZ

Yi+Y,+...4+Y,

& —I—an:d>X,

where the symbol < denotes the convergence in
distribution.

There does not exist explicit formsfor most of
the probability densities of stable variables. Ex-
ceptions are the Gaussian distribution (o = 2),
the Cauchy distribution (o« = 1) and the Lévy dis-
tribution (¢« = 1/2). Hence, an important way
to characterize an o-stable law is by means of its
characteristic function which has the following
form, in the symmetric case:

E{e’*} = exp(—a”0]")

wherea € (0,2] ando > 0 arethetwo parameters
of the symmetric a-stable (SaS) law.

We note X ~ S,(c,0,0). The parameters «
and o of this distribution are called, respectively,
theindex of stability and the scale parameter. For
Gaussian random variable (« = 2), o is propor-
tional to the standard deviation while the meanis
zero. When « > 1, the scale parameter induces a
norm || X ||, = o on avector space of jointly Sa'S
random variables.

Oneof themajor difficultiesencountered when
considering stable random variablesis the impos-
sibility of defining the variance and, when a < 1,
even the mean. More precisely, if we have aran-
dom variable X ~ S, (¢,0,0), where0 < « < 2,

then

E|XIFP<oo a 0<p<a,
E|XP=0c a p>a.

3. CONDITIONSFOR THE EXISTENCE
OF LINEAR STABLE RANDOM FIELDS

In the sequel, we will be concerned with two di-
mensional linear stable fields given by

Upm = Z Z hk,lwn—k,m—l (1)

where (w;, m ) (n,m)ez> areii.d. SaSrandom vari-
ables with scale parameter o, > 0. Asinfinite
summations are involved in the above expression,
the existenceof v, ,,, needsto be studied more pre-
cisaly. It can be shown ([7]) that the seriesin (1)
converges absolutely amost surely if and only if

i i|hk,l|a<00, when 0<a<1

k=—o00 [=—c0
o0 o0 ) 1
Z Z |hge ‘lnm1n<|hk7l|aw, 5)‘ < o0,
k=—o00 [=—c0
when o =1
Z Z |hpt] < oo, when a> 1.
k=—o00 [=—c0

Furthermore, when o« > 1, a necessary and
sufficient condition for the series defining u, ,,, to
be convergent in the sense of the norm || - ||, (or
equivalently,inthe L? senseif p < «) is.

DY Jhrl* < 0. )

k=—0c0 l=—00

Note that this condition reduces to
(hid) g pyeze € C(Z7)

when (w, ) (n,m)ez2 iIS@zero-mean white Gaussian
noise.



When one of the above existence conditionsis
satisfied, thefiltered randomfield v, ,,, iISSaSwith
scale parameter

Ou = 0w< i i |hk7l|a>1/a.

k=—0c0 l=—00

4. 2D FRACTIONAL o-STABLE
PROCESSES

Our objectiveis now to definea 2D discrete-space
process having long range dependence properties.

We recall that, in the 1D Gaussian case, such
a process u,, is provided by an FARIMA(0, d, 0)
withd € R, [1], which satisfies:

1—_1du:w
(1=q7") un = wn

wherew,, isazero-meanwhite Gaussian noisewith
variance 22 and ¢*'u,, = u,11. As(l — ¢71)

is a discrete-time derivation operator, (1 — q—l)d

represents a discrete-time fractional derivation of

order d(€ (0,1/2)). The power spectrum density

of the processis given by

2
N

Sw) = w |2d

sin —

2

and consequently, thisrandom process can be view-
ed asthe ouput of alinear filter with frequency re-
sponse |sin(w/2)|~¢ driven by a white Gaussian
noise. Notethat thelong range dependence behav-
iour is caused by the divergence of the frequency
response at w = 0.

By analogy, we define a 2D fractional stable
processu,, ,,, astheoutput of abidimensional filter
with frequency response

1

d
<sin2 % + sin? %)

Hd(wl’va) =

(3)

whoseinputisan Sa'Siid sequencew,, ,,, withscale
parameter o,. When d < 1, H; belongs to

LY ([—=,7]*) and it can be proved that theimpulse
response hy,; of thefilter is such that

th _ O((k2 _I_ Z?)d—l)
when k% 4+ 1?7 — oo. We deduce that, for a > 0,

Z |hk7l|a < >0

(k,)€Z?

if d < 1—1/a. Asthe long dependence prop-
erty isdesired (d > 0), the conditions stated in the
previous section show that the existence of v, ,,, IS
guaranteed only if « > 1. Inthiscase, thedomain
of validity of d istheinterval (0,1 — 1/«). Note
that this result is consistent with both those exist-
ing for 1D stable FARIMA processes and those re-
cently established for 2D Gaussian processes with
long range dependence [3, 4].

5. ESTIMATION OF THE PARAMETERS

Let u,,, bean N x N fractional field as defined
in the previous section and let w,, ,,, be the asso-
ciated driving noise. By computing the 2D DCT
Of (Unm)ocnmen A (Waim)oc, e WE ODEAIN
SaSfields (U,ﬁY,)OSMSN and (W,jY,)OSMSN. The
DCT alows us to realize a frequency analysis of
the filtering relation existing between w,, ., and
Wy, |tsadvantageover thediscrete Fourier trans-
form is to generate real transformed coefficients
whose probability distribution are easier to char-
acterize.

More precisely, W, is an Sa'S random vari-
able with scale parameter

N—1 1/
— (Z |c<k,n>|a)

n=0

N-1 /e
X (Z |0<z,m>|a) 4

where

[ o (022




Furthermore, by using the fact that H, isred, it
can be shown that

N

Uk,l I

W v Ha (kN wWIN)
k.l

withwy v = 7k/N. Thisyieds:

oy

~ Hy(wpn,win). (5)
O'Wé\fJ N—co

Besides, asU/}); isaSaSrandomvariable, log |U}|

isasecond order random variable [8] with mean

1
E {log |U,£Vl|} =Cg (E — 1) + logoyn (6)

where C'; is the Euler’s constant. By combining
relations (3), (4), (5) and (6), we obtain

E {log |UN|} o Ky(a) 4 log oy,

— dlog (sin2 (wp.n) + sin? (M,N))

where Ky («) is aconstant depending on the sta-
bility index. The above relation suggests the use
of alinear regression method for the estimation of
log o, and d.

Interestingly, inthecase e = 2, thisleast square
approach is close to the log-periodogram method
[2, 4] often used to identify Gaussian fractional
models.

Note that,in this approach, the value of « has
been assumed to be known. When « is unknown,
it can be estimated using classical methods. I1n par-
ticular, the sample characteristic function method
[8] provides asimple estimation of «.

6. EXPERIMENTAL RESULTS

In Figs. 1 and 2-3, two 256 x 256 realizations of
fractional stable fields are shown.

In order to evaluate the performances of the
identification method proposed in the previous sec-
tion, aMonte Carlo study hasbeenrealized for dif-
ferent parameter values of the synthesized fields
(see Table 1). We observe the overall good per-
formancesfor the estimation of « and d. We note
however that the variance of estimation of log o,
tends to increase as « decreases.
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H Par. ‘ « ‘ log oy, ‘ d H
Values 2 0 0.4
Est. | mean | 1.9946 | -0.0161 | 0.3964
std | 0.0077 | 0.0219 | 0.0048
Values 18 0 0.4
Est. | mean | 1.8026 | 0.0120 | 0.3970
std | 0.0517 | 0.2119 | 0.0120
Values 18 0 0.2
Est. | mean | 1.7999 | 0.0097 | 0.1984
std | 0.0118 | 0.2862 | 0.0141
Values 17 0 0.4
Est. | mean | 1.7063 | 0.0266 | 0.3964
std | 0.0701 | 0.2948 | 0.0145

Table 1: Performances of the proposed estimation Figure 2: A realization of the proposed fractional
method (500 realizations of 256 x 256 field). model (o = 1.8,d = 0.4).

Figure 1: A realization of the proposed fractional Figure 3: Same image asin Fig. 2 shown in log-
model in the Gaussian case (o« = 2, d = 0.4). scales.



