LEVY PROCESSES FOR IMAGE MODELING

Oleg V. Paliannikov, Yufang Bao and Hamid Krim

ECE Dept., NCSU,
Raleigh, NC 27695-7914.
ovpolian@eos.ncsu.edu, ahk@eos.ncsu.edu, yfbao@eos.ncsu.edu

ABSTRACT

Nonhomogenous random fields are known to be
well adapted to modeling a wide class of images.
Their computational complexity generally causes
their lack of appeal, we propose a more efficient
model capable of capturing textures, shapes, aswell
asjumpstypically encountered in infra-red images.
The so-called Levy Random fields as we show, can
indeed represent avery well adapted aternativefor
inference applicationsand the like.

1. INTRODUCTION

Research interest in determining good models for
classes of processes is neither too old for novelty
nor new as hot topic. Modelingisinfact aclassica
topic of research inlight of itsimportancein avast
array of applications, and its ubiquitous useful ness.

Our main focus in this paper is to propose a new
model for a class of images (infrared images)
whoseimportance would be too lengthy to describe
here. Our interest in these models is for Bayesian
inference and ultimately for abject recognition. The
challenge in image analysis is the wealth of fea
tures (edges, texture, shapes, etc.) whichinturnis
far too complicated to be captured by asimple sta-
tistical model. We show that the newly proposed
model, namely the Levy model, can efficiently and
effectively integrate these various statisticsinto one
model.

Using the Levy-Khinchine formula [1, 2], every
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infinitely divisible distribution p(dz) on R? has a
characteristic i(¢) = [5» €(®) u(dz) with thefol-
lowing general form, where ¢(-) isabounded, com-
pactly supported measurable function on R?,

fi(¢) = exp{ia(¢) @@-I— )
Jeo () o1y (duds)}

where ¢ is acontinuousfunction and o2 is positive
continuous function on R? , v(duds) is the Levy
measureon R x R?, subject to sometechnical condi-
tion. We can assume the first component a(¢) = 0
since it is easy to treat. The above equation sug-
gests [3] the representation of aLevy random field
X,,t € R2 asastochastic integral

X = // wH (duds) + B,
R x[0,t]

where B; is a Gaussian random field correspond-
ing to the second component of Equation 1. Given
that a Gaussian random fieldiswell known, we con-
centrate here on the first term of the above equa
tion. The function H (-, -) is a Poisson measure on
R xR3 whichhasmean E[( H (duds))] = v(duds).
This measure here, controls the amplitudes as well
as the rate of the jumps, and in fact defines a spe-
cific Levy Random field (e.g. as Poisson random
fild , Gamma random field and « -stable random
field, etc.). When only positive jumps are present,
thefieldisreferred to asasubordinaterandom field,
resulting in the above formula being rewritten as

Xt:// wHy(duds)
R4 x[0,¢]

where H;(dsdu) (H2(dsdu) below ) now controls
only the positive (negative) jumps and their rate.



Thisinturn, leadsto an efficient simulation of asub-
ordinaterandom field. Random fieldswith negative
jumps can similarly be described as

th// uHy(duds).
R _x[0,¢]

By introducing a probabilistic mixing of the two
processes which we show to still satisfy the prop-
erty of a Levy field, we are able to demonstrate
as partialy shown in the examples below, that
realistic sample paths are obtained, much likethose
encountered in Infra-red imagery.

2. ILM FOR MEASURES ABSOLUTELY
CONTINOUSWITH RESPECT TO OTHER
LEVY MEASURES

2.1, InverselLevy Measure

Our goal in this paper is to extend the ILM ago-
rithm to afford us the modeling of a wider class of
processes. Towards that end, we propose to con-
sider a new measure p(dz ) resulting from a trans-
formation of the original Levy measurev(dz).

Specifically, suppose v(dz) is a given Levy mea-
sure, then according to [3] for any real fixed a > 0,
we areto find

w=L"Ya) Y inf{u > 0|L(«) <a}, (2)
where we define

Lw) = v([us +00)). 3

The solution to (2) can be pretty difficult if at al
tractable to obtain when the measure v(dz) is of a
genera class. For clarity and tractability we restrict
our study to the class of Levy measures for which
theseinversions are attainable.

Aswe show below, if v(dz ) isaLevy measure such
that (2) can be solved, then

u=M""(a) def inf{u >0|M(v')<a} (4)

where a > 0 isarbitrary but fixed and

M (u) = [ +00)) 5)

can be solved so long asthe measure :(dx ) isabso-
lutely continuous with respect to v(dz).

2.2. Generalized ILM

Let us suppose that (dz) and p(dx) aretwo Levy
measures. Let also f(«) beanon-negativefunction
defined onthenon-negativehalflingi.e. f : Ry —
R4 and

mm:Aﬂ@wm>

for each set A measurablewithrespecttov(dz) (i.e.
themeasure i dx ) isabsolutely continuouswith re-
specttov(dz)). Sinceour interestisin samplepaths
on finiteintervals we can then, with noloss of gen-
erality, assume that f(z) is afinite staircase func-
tion. That means that

dneN
d0=21 < - <2y < Tpg1 =+
dey, .0, €RY

Vo € Ry f(2) = 200 il o)y
Proposition 1. Givenafixed a > 0, thesolutionto

w=inf{u > 0|M(v) < a}.

isgiven by
u=[L"" (%@er) + L($¢a+1)) ;
where

i =inf{ie{l...n} |a€[M(zit1), M(2;)}.

Proof:

The above notation will become clear as we el abo-
rate further. Denoting

a; = M(z;),

and in light of the non-negativity of the function
f(z) and of the messure v(dz), {a;}/—, isanon-
increasing sequence. Using thisfact wefind thein-
terval (z;, z;41] whereour solution« liesand where
¢ dependson « . Denote

i =inf{i e {l...n} |aé€laj41,a;)}, (6)



and note that although a; decreases, it is still pos-
sblethat Vi € {1...n} a; > a and hence there
isnoisuchthat a € [a;41,a;). Consequently, that
meansthat u > z,, andthusvVz € [u, +o0) f(z) =
¢, # 0. Thuswe can write

inf{u/|M(u') < a} = inf{u’|cn (v) < a}
inf{u/|L(u") < —} L~ ( ).

Cp,

Now let ussupposethat {: € {1...n} | a €
[@it1,a;) < a} # 0, which immediately yields
u € (x4a, x;a41]. Indeed, we have chosen ¢ so that
u < 2jayp. Atthesametimeif u < 2;a, then due
to thefact that ;(dz ) isanon-negative measure we
also have a contradiction with (6). Denoting

d' = aeM(rep), (7)
we obtain thefollowing

/

_l(a— + L(@iat1)), (8)

Cja

w=1L

where the divisionis aways possible per (6) where
Cja 7£ 0.

Remark: A few words for clarifying the
last two steps are in order. Note that
Yu € (wja,x0q1) f(u) = ¢ = const (Re
call that we have already restricted the”domain” of
u to the set ($ia,$ia+1]. Thecaseu = Tiayl will
be considered later.) Then the following sequence
of equivalent inequalities can be easily written:

(1w, +00)) < a) & (p([u, +0)

<:>M([$2“+17 +OO)) <

(v, wia41)) < a

M (iat1))
([ 2041)) < d)

V([ 2iep1)) < d) &
)

)& (v([u', ziag1))+

S~—r

@ ([T, +30))) ©

@@

/

2

(¢
(v([v's wiag1)) <

g}

2@

Pieg1,4+00)) < - o [riog1, +00)) &

@

([, +00)) < = 4+ L(wias))

Cja

tofindly lead to
it 4o0 <) =
inf{u' | v([v',+00)) < 2=+ L(wjaq1)}.

Thisclearly also leadsto the solutionof Z=1( A& s+
L(ze41)). Now recal that all these mequalltles
make sense if it isassumed that u < 2;a41. Nev-
erthelessit is easy to see that the resulting formula
asoworksinthecasewhenu = z;a7. Wejust get
w= L7 (L(zsaq1) whichistrue.

In summary we propose the following a gorithm to
compute M ~1(a):

Algorithm.

1. For agivena > 0 and a staircase function
f(2) find the number :* of the partition seg-
ment where the solution « lies using the for-
mula (6);

2. The solution to the Equation (4) is then given
by theformula(8) where ¢’ isdefined asin (7).

3. EXPERIMENTAL RESULTS

Finally we show some practical results that can be
obtained using the method described above. Pic-
tures on the left correspond to the initial Levy pro-
cesses with some measures v(dz ). The ones on the
right are related to the processes with the modified
measures . = [ f dv for somefunctions f(z).

4. CONCLUSION

We proposed a Levy random field model capable
of capturing and accounting for the variousfeatures
typically encountered in Infra-red images (not lim-
ited to, however) which are of interest to usin a
number of applications.
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Figure 1: A three dimensional representation of the

random field.

Figure 2: A three dimensional representation with
localized compact features.
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Figure 3: A 2-D random field with a given Levy
measure and its mapping.

Figure 4: A 2-D random field with a given Levy
measure and a different mapping functional.
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