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ABSTRACT

Nonhomogenous random fields are known to be
well adapted to modeling a wide class of images.
Their computational complexity generally causes
their lack of appeal, we propose a more efficient
model capable of capturing textures, shapes, as well
as jumps typically encountered in infra-red images.
The so-called Levy Random fields as we show, can
indeed represent a very well adapted alternative for
inference applications and the like.

1. INTRODUCTION

Research interest in determining good models for
classes of processes is neither too old for novelty
nor new as hot topic. Modeling is in fact a classical
topic of research in light of its importance in a vast
array of applications, and its ubiquitous usefulness.

Our main focus in this paper is to propose a new
model for a class of images (infra-red images)
whose importance would be too lengthy to describe
here. Our interest in these models is for Bayesian
inference and ultimately for object recognition. The
challenge in image analysis is the wealth of fea-
tures (edges, texture, shapes, etc.) which in turn is
far too complicated to be captured by a simple sta-
tistical model. We show that the newly proposed
model, namely the Levy model, can efficiently and
effectively integrate these various statistics into one
model.

Using the Levy-Khinchine formula [1, 2], every
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infinitely divisible distribution �(dx) on R2 has a
characteristic �̂(�) =

R
R2
ei�(x)�(dx) with the fol-

lowing general form, where�(�) is a bounded, com-
pactly supported measurable function on R2,

�̂(�) = expfia(�)� �2(�)
2 +R

R2
(eiu�(s) � 1)�(duds)g

(1)

where a is a continuous function and �2 is positive
continuous function on R2 , �(duds) is the Levy
measure onR�R2, subject to some technical condi-
tion. We can assume the first component a(�) = 0
since it is easy to treat. The above equation sug-
gests [3] the representation of a Levy random field
Xt; t 2 R

2
+ as a stochastic integral

Xt =

Z Z
R�[0;t]

uH(duds) +Bt

where Bt is a Gaussian random field correspond-
ing to the second component of Equation 1. Given
that a Gaussian random field is well known, we con-
centrate here on the first term of the above equa-
tion. The function H(�; �) is a Poisson measure on
R�R2

+which has meanE[(H(duds))] = �(duds).
This measure here, controls the amplitudes as well
as the rate of the jumps, and in fact defines a spe-
cific Levy Random field (e.g. as Poisson random
field , Gamma random field and � -stable random
field, etc.). When only positive jumps are present,
the field is referred to as a subordinate random field,
resulting in the above formula being rewritten as

Xt =

Z Z
R+�[0;t]

uH1(duds)

where H1(dsdu) (H2(dsdu) below ) now controls
only the positive (negative) jumps and their rate.



This in turn, leads to an efficient simulation of a sub-
ordinate random field. Random fields with negative
jumps can similarly be described as

Xt =

Z Z
R��[0;t]

uH2(duds):

By introducing a probabilistic mixing of the two
processes which we show to still satisfy the prop-
erty of a Levy field, we are able to demonstrate
as partially shown in the examples below, that
realistic sample paths are obtained, much like those
encountered in Infra-red imagery.

2. ILM FOR MEASURES ABSOLUTELY
CONTINOUS WITH RESPECT TO OTHER

LEVY MEASURES

2.1. Inverse Levy Measure

Our goal in this paper is to extend the ILM algo-
rithm to afford us the modeling of a wider class of
processes. Towards that end, we propose to con-
sider a new measure �(dx) resulting from a trans-
formation of the original Levy measure �(dx).

Specifically, suppose �(dx) is a given Levy mea-
sure, then according to [3] for any real fixed a � 0,
we are to find

u = L�1(a)
def
= inffu0 � 0jL(u0) � ag; (2)

where we define

L(u)
def
= �([u; +1)): (3)

The solution to (2) can be pretty difficult if at all
tractable to obtain when the measure �(dx) is of a
general class. For clarity and tractability we restrict
our study to the class of Levy measures for which
these inversions are attainable.

As we show below, if �(dx) is a Levy measure such
that (2) can be solved, then

u = M�1(a)
def
= inffu0 � 0jM(u0) � ag (4)

where a � 0 is arbitrary but fixed and

M(u)
def
= �([u; +1)) (5)

can be solved so long as the measure �(dx) is abso-
lutely continuous with respect to �(dx).

2.2. Generalized ILM

Let us suppose that �(dx) and �(dx) are two Levy
measures. Let also f(x) be a non-negative function
defined on the non-negative half line, i.e. f : R+ !
R+ and

�(A) =

Z
A

f(x) �(dx)

for each setAmeasurable with respect to �(dx) (i.e.
the measure �(dx) is absolutely continuous with re-
spect to �(dx)). Since our interest is in sample paths
on finite intervals ,we can then, with no loss of gen-
erality, assume that f(x) is a finite staircase func-
tion. That means that

9 n 2 N
9 0 = x1 < � � � < xn < xn+1 = +1
9 c1; : : : ; cn 2 R+

8x 2 R+ f(x) =
Pn

i=1 ciIf[xi;xi+1)g:

Proposition 1. Given a fixed a � 0, the solution to

u = inffu0 � 0jM(u0) � ag:

is given by

u = L�1

�
a�M(xia+1)

cia
+ L(xia+1)

�
;

where

ia = inffi 2 f1 : : :ng j a 2 [M(xi+1);M(xi)g:

Proof:

The above notation will become clear as we elabo-
rate further. Denoting

ai = M(xi);

and in light of the non-negativity of the function
f(x) and of the measure �(dx), faigni=1 is a non-
increasing sequence. Using this fact we find the in-
terval (xi; xi+1] where our solutionu lies and where
i depends on a . Denote

ia = inffi 2 f1 : : :ng j a 2 [ai+1; ai)g; (6)



and note that although ai decreases, it is still pos-
sible that 8i 2 f1 : : :ng ai > a and hence there
is no i such that a 2 [ai+1; ai). Consequently, that
means that u > xn and thus 8x 2 [u;+1) f(x) =
cn 6= 0. Thus we can write

u = inffu0jM(u0) � ag = inffu0jcnL(u
0) � ag

= inffu0jL(u0) �
a

cn
g = L�1(

a

cn
):

Now let us suppose that fi 2 f1 : : :ng j a 2
[ai+1; ai) � ag 6= ;, which immediately yields
u 2 (xia; xia+1]. Indeed, we have chosen ia so that
u � xia+1. At the same time if u � xia , then due
to the fact that �(dx) is a non-negative measure we
also have a contradiction with (6). Denoting

a0 = a�M(xia+1); (7)

we obtain the following

u = L�1(
a0

cia
+ L(xia+1)); (8)

where the division is always possible per (6) where
cia 6= 0.

Remark: A few words for clarifying the
last two steps are in order. Note that
8u 2 (xia ; xia+1) f(u) = cia = const (Re-
call that we have already restricted the ”domain” of
u to the set (xia ; xia+1]. The case u = xia+1 will
be considered later.) Then the following sequence
of equivalent inequalities can be easily written:

(�([u0;+1)) � a), (�([u0;+1))

��([xia+1;+1)) �

a� �([xia+1;+1))), (�([u0; xia+1)) � a

�M(xia+1)),

(�([u0; xia+1)) � a0),

(cia�([u
0; xia+1)) � a0),

(�([u0; xia+1)) �
a0

cia
), (�([u0; xia+1))+

�([xia+1;+1)) �
a0

cia
+ �([xia+1;+1))),

(�([u0;+1)) �
a0

cia
+ L(xia+1))

to finally lead to

inffu0 j �([u0;+1)) � ag =

inffu0 j �([u0;+1)) � a0

cia
+ L(xia+1)g:

This clearly also leads to the solution of L�1( a0
cia

+
L(xia+1)). Now recall that all these inequalities
make sense if it is assumed that u < xia+1. Nev-
ertheless it is easy to see that the resulting formula
also works in the case when u = xia+1. We just get
u = L�1(L(xia+1) which is true.

In summary we propose the following algorithm to
compute M�1(a):

Algorithm.

1. For a given a > 0 and a staircase function
f(x) find the number ia of the partition seg-
ment where the solution u lies using the for-
mula (6);

2. The solution to the Equation (4) is then given
by the formula (8) where a0 is defined as in (7).

3. EXPERIMENTAL RESULTS

Finally we show some practical results that can be
obtained using the method described above. Pic-
tures on the left correspond to the initial Levy pro-
cesses with some measures �(dx). The ones on the
right are related to the processes with the modified
measures � =

R
f d� for some functions f(x).

4. CONCLUSION

We proposed a Levy random field model capable
of capturing and accounting for the various features
typically encountered in Infra-red images (not lim-
ited to, however) which are of interest to us in a
number of applications.
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Figure 1: A three dimensional representation of the
random field.
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Figure 2: A three dimensional representation with
localized compact features.
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Figure 3: A 2-D random field with a given Levy
measure and its mapping.
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Figure 4: A 2-D random field with a given Levy
measure and a different mapping functional.
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