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Abstract

In various data applications, one is confronted with
the task of: (i.) finding a best approximate solution
to a system of overdetermined linear equations, or,
(ii.) finding a best rank ¢ approximation of a ma-
trix. In solving either problem, a sum of squared
errors criterion is almost always invoked when de-
termining the best solution. In many applications,
however, it is preferable to find a solution in which
the sum of equation error magnitudes is minimized
(i.e., a minimum ¢; norm). This is true for cases
in which the data under analysis contains outliers.
Unfortunately, there does not exist a closed form so-
lution for the minimum sum of equation error mag-
nitude criterion. One must therefore resort to algo-
rithmic procedures for iteratively finding such a so-
lution. Efficient algorithmic procedures for solving
solution either of the problems posed above based
are presented and are illustrated by practical exam-
ples.

1 INTRODUCTION

Many problems in digital signal processing can be
formulated as that of finding a best approximate so-
lution to a system of over-determined linear equa-
tions. This is true in such applications as linear
prediction, direction finding, exponential modeling,
and, image processing. This generic problem can be
formulated as

y =Ax+€ (1)

where vector y € RM and matrix A € RM*N are

given. It is then desired to select the parameter vec-
torx € RN so as to make the associated model error
vector € € RM as close to the zero vector as possi-
ble. As a measure of best approximate solution, we
shall invoke the ¢, norm of a vector and matrix.
Specifically, the £, norm of the M x N matrix A
with elements a,,,, is defined to be

M N 1/p
A, = [Z > \amn\p] (2)

m=1n=1

This matrix size measure satisfies the axioms of a
norm so long as the norm index is constrained by
p > 1. Furthermore, it is applicable to row vectors
where M =1 and to column vectors where N =1 .

There are a variety of methods for obtaining the
best approximate solution of the system of linear
equations (1) in the ¢, norm sense. There are two
approaches which will be considered in this paper.
The first method involves the traditional approach
of selecting the parameter vector x so as to minimize
the £, norm of the model error vector €, that is

Criterion 1: i, ly—Ax|l, (3)
Let an optimal selection be designated by x° which
may or may not be unique depending on the rank of
matrix A and the choice of the norm index p. The
nature of an optimal solution is very much depen-
dent on the value assigned to p and the data analyst
must be aware of this factor.

In the second method for approximating a solution
to a system of over-determined linear equations, a



less direct approach in taken in which a reduced
rank ¢ < M approximation of an augmented matriz
is determined, that is

min
BcRMX(N+1)
rank(B)=q

Criterion 2:

(4)

[-yial-B

p

Once an optimum reduced rank augmented matrix
is determined, it is then partitioned as A° = |

y?:A°]. Since the columns of the reduced rank aug-
mented matrix approximation are linearly depen-
dent, it follows that the reduced rank system of lin-
ear equations y° = A°x is guaranteed to have a
solution. Specifically, any vector whose first com-
ponent is one will be a solution, that is

[ )1(0 ] € null(B?) (5)
If the null space of matrix A%s one and a basis
vector for the null space has a nonzero first com-
ponent, then their will be a unique solution of this
form. On the other hand, if this null space has
dimension greater than one then there will always
exist an infinite number of solutions. The data ana-
lyst should perform a preliminary experimentation
to determine whether the first or second method is
more effective for the problem being considered.

2 MINIMUM /¢, NORM SOLU-
TION TO A SYSTEM OF LIN-
EAR EQUATIONS

The norm index is typically taken to be the least
squared error selection p = 2 since such a choice
leads to a convenient solution for either of these two
minimization problems. This desirable attribute is
buttressed by the fact that the £5 choice often leads
to acceptable modeling results. It is for these two
reasons that the data analyst instinctively appeals
to the /s criterion for finding a best approximate
solution. It is well known that a selection of the
parameter vector to minimize criterion (3) for p = 2
is given by

Solution 1: x=Aly

(6)

where AT € RV*M (designates the Moore-Penrose
pseudo inverse of matrix A. When matrix A has full
column rank N, the Moore-Penrose pseudo matrix
is specified by At = [ATA]71AT and in this case
there will be a unique solution.

In solving the second minimization problem (4),
the singular value decomposition (SVD) of the aug-
mented matrix is first determined, that is

[yiA] =) OpUEVE
k=1

where r denotes the rank of the augmented ma-
trix. In this SVD decomposition, the positive sin-
gular values o are ordered in the standard mono-
tonically non-increasing fashion (i.e., o > op11),
the left singular vectors {uy} are orthonormal vec-
tors (i.e., ulu,, = 8(k —m)) in RM and the right
singular vectors {vy} are orthonormal vectors (i.e.,
vivm = 6(k—m)) in R¥*L. The solution to mini-
mization problem (4) is simply obtained by truncat-
ing this SVD decomposition to the ¢ outer products
associated with the largest singular values, that is

q
Solution 2: B° = Z OpUEVE (7)
k=1

We may then appeal to relationship (5) to obtain
an approximate solution.

3 MINIMUM /; NORM SOLU-
TION TO A SYSTEM OF LIN-
EAR EQUATIONS

Although the /5 based modeling problem has the
useful attribute of having a closed form solution, it
can lead to undesirable modeling results when the
data being analyzed possesses a few data outliers.
A data outlier is a data point that does not repre-
sent the general trend of the data. Data outliers can
arise from bad data point recordings or from envi-
ronmental noise. Whatever the case, these outliers
can have a dramatic negative impact on the resul-
tant optimum parameter vector due to the squared
error weighting used in ¢ based modeling . When



it is suspected that the data being analyzed con-
tains data outliers, it is useful to use criteria that
are not as suspectable to a few data outliers. The
¢1 norm is such a criterion since it only weights the
magnitude of the error instead of its square.

To illustrate the effect of data outliers, let us
consider the case of linear data which is contami-
nated by additive Gaussian noise as well as contain-
ing two data outliers. It is now desired to uncover
the linear trend in the noise contaminated data set
y(A),y(2A),---,y(NA) where A denotes the in-
terval between data points. Using the linear data
model ypr(n) = nA+b where A and b designate the
slope and y-axis intercept of the line, a vector repre-
sentation of the modeling error €(n) = y(n) —yas(n)

for n = 1,2,---, N results in the following over-
determined system of linear equations
y(A) N (1)

m

y(24)
: b

2A1[

y(NA) NA 1
If the optimal slope and y-axis intercept parameters
are selected so as to minimize criterion (3) for a
minimum sum of error magnitudes (i.e.,p=1) or a
minimum sum of square errors (i.e., p = 2) choice,
the resultant optimal /1 and ¢ line fits are shown
in Figure 1. It is apparent that the best ¢s line
fit is badly skewed by the two data outliers while
the best ¢; line fit is relatively unaffected by data
outliers and closely approximates the majority of
data points. This behavior is characteristic of the
¢1 norm criterion and it constitutes a useful tool
when a few data outliers are present in the data
under analysis.

With the above thoughts in mind, we shall now
provide some well-known theorems characterizing ¢;
solutions to problem (3) with p = 1. The follow-
ing well-known fundamental theorem describes the
minimum ¢; norm solution to a system of M linear
equations in /N unknowns.

Theorem 1 Let there be given the column vector
y € RM*Land matriz A € RM*N which has full col-
umn rank N. Furthermore, let any subset of N rows

3
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Figure 1: Best ¢; and ¢5 line fits to additive noise
contaminated linear data.

of matrix A be linearly independent. It then follows
that there exists a minimum {1 norm approximate
solution x°

(8)

such that the associated error vector €°= y—Ax°
has at least N of its elements equal to zero.

—Ax° min ||ly—Ax
ly 4 xeRNHy 4

Conceptually, an optimum ¢; norm solution can be
obtained by directly solving each subset of NV lin-
ear equations from the original system of M lin-
ear equations. Each such solution x is called an
extreme point and is characterized by the fact at
least N components of the associated error vector
e = y—Ax are zero. Let the set of extreme points
be designated by x1,X2,...,Xs where the number
of extreme points is bounded above by the combi-
nation of M things taken N at a time so that s <
M!/[N!(M — N)!]. Theorem 1 indicates that an op-
timum solution corresponds to any extreme point
which renders the measure ||y—Axg|/; a minimum
for 1 < k < s. Unfortunately, the need to solve as
many as M!/[N!(M — N)!] sets of linear equations
makes this direct approach impractical for moder-
ate to large values of M relative to N.

Due to the impracticality of using the direct
approach, various algorithms have been developed



which more efficiently use the fact that an extreme
point constitutes a solution. The class of exchange
algorithms are particularly important in this regard.
In an exchange algorithm, one equation associated
with the prevailing extreme point is exchanged for
another equation not associated with the prevail-
ing extreme point to generate a new extreme point.
This single equation exchange is strategically made
so that the new extreme point has a smaller ¢
norm. This exchange process is continued until an
optimum extreme point is eventually obtained. Al-
though more efficient than the direct method, these
exchange algorithms are still relatively inefficient
since its takes at least one iteration to purge a non-
optimum extreme point.

In this paper, a new algorithm is presented
whereby the prevailing extreme point is perturbed
to an improving point which is typically not an ex-
treme point. By a series of improving perturbations,
a new extreme point is then obtained. This process
is continued until an optimum extreme point is ob-
tained. This procedure is generally more efficient
than an exchange algorithm since it rids itself more
rapidly of equations not associated with an opti-
mum extreme point. There exist a number of theo-
rems needed to describe the algorithmic procedure
which will be presented at the conference.

4 MINIMUM /; NORM LOWER
RANK APPROXIMATION
OF A MATRIX

The use of the SVD for finding the best rank ¢ ap-
proximation of a matrix constitutes a widely used
tool for such applications as: (i.) finding a best
approximation solution to a system of linear equa-
tions, (ii.) decreasing the deleterious effects of ad-
ditive noise on data, and, (iii.) for image compres-
sion. It can happen, however, that the use of a
sum of squared error criterion (which is employed
in the SVD) for measuring the quality of approxi-
mation can lead to yield undesirable results. A sum
of magnitude error would be more appropriate in
many instances. With this in mind, an effective al-

gorithm for finding the best rank ¢ approximation
of the M x N matrix A in the sense of minimizing
the sum of magnitude criterion

fH{ug}, {ve}) = HA =D wvi (9)
k=1

1

is described. It is noted that the sum of outer prod-
ucts Y1, u,vi in which the vectors u, € RM and
vy € RN generates a M x N matrix with rank less
than or equal to r.

Functional (9) is readily shown to be a convex
function of the vector set {uy,uy, ..., u,} for a fixed
vector set {vi,vs,...,v,} and vice-versa. It is not,
however, a convex functional of these two vector
sets taken together. Our objective is to select these
two vector sets and so as to minimize functional
f({ug},{vr}). The resultant optimal choice then
gives rise to the best rank ¢ matrix approximation
as designated by

q
Al = Z ogudvl (10)
k=1

where without loss of generality the optimum vec-
tors are normalized so that |lup|, = |[vill; = 1.
An iterative method for finding the best rank g ap-
proximation of a matrix is to be presented at the
conference. This will include a sequential rank one
approximation to initiate the algorithm and the ba-
sic steps of the algorithm.
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