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ABSTRACT

In this paper, a technique is proposed to recognize 2D ob-
jects under translation, rotation, and scale transformation.
The technique is based on the continuous wavelet transform
and neural networks. Experimental results are presented
and compared with traditional methods. The experimental
results showed that this re�ned technique was successfully
capable of classifying the objects and that it outperformed
some traditional methods especially in the presence of noise.

1. INTRODUCTION

A great deal of research in computer vision focuses on in-
variant 2D object recognition, yet the available methods
su�er from various disadvantages that limit their applica-
bility. In this paper, a new technique is presented for rec-
ognizing 2D objects under orientation, location, and size
transformation. The developed technique is based on ana-
lyzing the boundary of objects using the decay of the con-
tinuous wavelet transform and neural networks. Mallat [1]
stated that the wavelet mathematical theory is reaching a
mature stage but it is not clear how to use these wavelet
descriptors to solve computer vision problems.

The paper is organized as follows. Section 2 describes
the � � S diagram and how to eliminate the wrap around
error. Section 3 investigates how to calculate the position
and the regularity of each singularity. Then, in Section 4,
the experimental results are presented. Section 5 provides a
comparison among certain traditional methods and our pro-
posed technique. Finally, Section 6 contains the conclusion
of the given work.

2. THE WRAP AROUND ERROR-FREE �� S
DIAGRAM

In our recognition system, the �rst step is to extract the ob-
ject boundary. One of the edge detection techniques can be
used to extract the boundary of the object [2]. The bound-
ary is recovered by one of the edge-following techniques [3].
The object boundary will be represented by the �� S dia-
gram, where � is the angle made between a �xed line and
the tangent to the boundary of the object. This angle is
plotted against S, the arc of the boundary traversed. A
boundary is considered as a sequence of successive bound-
ary pixel coordinates (xi; yj).

The �� S diagram at any boundary point i can then
be expressed as the tangent value calculated in the window
w:

�i = tan�1
yi � yi�w
xi � xi�w

i = 0; 1; : : : ;N � 1 (1)

Here, N is the number of the boundary points.
As an example, Figure 1(a) shows the image of an ob-

ject, and Figure 1(b) shows its boundary. The range of
equation (1) is bounded between ��=2 and �=2. As a re-
sult, the wrap around error occurs when j�j exceeds �=2
and this error creates additive discontinuities which do not
represent any meaningful features of the object. In the next
section, the continuous wavelet transform is used to detect
the discontinuities in the ��S diagram. The discontinuities
introduced by this wrap around error will be misinterpreted
by the wavelet transform. To eliminate this error, an o�set
is added to the �i values to get the compensated ones:

�compensated = �i + o�set (2)

This o�set is initialized to zero, then it is calculated at
each boundary point as:

o�set = o�set + � if (�i�1 ��i) � � � factor
= o�set � � if (�i ��i�1) � � � factor

(3)

We have selected the factor to be equal to 0.95. Fig-
ure 2(a) shows the wrap around error ��S diagram for the
plane object shown in Figure 1(a), and Figure 2(b) shows
the wrap around error-free � � S diagram. Each � � S
diagram will be normalized such that its length is equal to
256 (i.e. N = 256). The � � S diagram itself is invariant
to rotation. To make it invariant to translation, the start-
ing point is chosen to be the point on the boundary that
intersects with the major principal axis [4].

3. THE MODULUS MAXIMA OF A

CONTINUOUS WAVELET TRANSFORM

In the previous section, it was shown how each object may
be represented by its �� S diagram. The �� S diagram
consists of singularities that carry the most important in-
formation that represents each object. In this section, the
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Figure 1: (a) A tool object. (b) The tool boundary.

evolution across the scales of the continuous wavelet trans-
form is used to specify the location of these singularities
and to calculate their Lipschitz exponents.

If we denote the �� S diagram as f(t), then Wf(u; s)
denotes the continuous wavelet transform in the scale space
diagram where u is the position parameter and s is the scale.
The function Wf(u; s) can be calculated by convolving f(t)
with the wavelet function  (t) as follows

Wf(u; s) =

Z +1

�1

f(t)
1p
(s)

 
�
t� u

s

�
dt (4)

The decay of jWf(u; s)j can be calculated by measur-
ing the decay of its modulus maxima values. The modulus
maxima line consists of points which are locally maximum.

The kind of wavelet function used is

 (t) = (�1)n
dn�(t)

dtn
= (�1)n�(n) (5)

where � is a smoothing function satisfyingR +1

�1

�(t)dt 6= 0.

The smoothing function � is chosen to be a Gaussian
function such that the modulus maxima of Wf(u; s) are
not interrupted when the scale decreases [5].

The following algorithm is used to extract the singular-
ity position and its regularity.

1. Choose n = 1 in equation (5) and get the continuous
wavelet transform. The scale is chosen to start from
s = 1 to s = 8.

2. Extract the maxima line which propagates more than
a certain scale value. In our experiment, this value
equals 2. In this way, we neglect maxima lines that
are smaller than a given small length which either
does not carry a signi�cant information or it may
occur due to noise.
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Figure 2: (a) Wrap around error �� S diagram. (b) Wrap
around error free �� S diagram.

3. Get the position of each singularity where the max-
ima line intersects with the �nest possible scale level
(s = 1)

4. The singularity exponent �+ 1
2 is calculated by mea-

suring the decay slope of log2 jWf(u; s)j as a function
of log2s [6].

If all the singularities have a Lipschitz exponent �
less than 1 then the algorithm will terminate.

5. If the singularity has a Lipschitz exponent � that is
almost equal to 1, then the actual singularity expo-
nents may be larger than 1. In this case, the same
procedure is repeated again by choosing the wavelet
which has n = 2 in equation (5).

We are not going to check all the maxima lines in the
new wavelet transform. We need to calculate the ac-
tual Lipschitz exponent of the singularity with � > 1
but can not be calculated when the wavelet used has
n = 1. Knowing the position of the singularity u0
from step (3), the cone of inuence of this singular-
ity as the region in the scale space is formed where
ju� u0j � Cs and the wavelet  has a compact sup-
port equal to [�C;C]. The largest maxima line in
this cone of inuence is used to calculate the Lips-
chitz exponent of this singularity.

The procedure can be repeated if the Lipschitz expo-
nent � is greater than 2.

If the number of singularities detected is denoted byM ,
then the feature vector for each object is:

V = VA [ VB (6)

whereby

VA = fd1; d2; : : : ; dMg; (7)

VB = f�1; �2; : : : ; �Mg; (8)
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Figure 3: The segmented tool.

and where

di is the distance between singularity i and
i+ 1,(i = 1; : : : ;M � 1)

dM is equal to the distance between singularity M
to the end of the transformed signal and the
beginning of the transformed signal and the
�rst singularity, and

�i is the Lipschitz exponent for the singularity
number i, (i = 1; : : : ;M)

Figure 3 shows the tool shown in Figure 1(a) after it
has been segmented in the positions where the singularities
are detected by the previous algorithm.

Neural networks are used to solve the supervised clas-
si�cation problems [7]. The classi�er used is the multilayer
feedforward network which is trained by means of the back-
propagation algorithm [8]. The number of input nodes is
equal to the maximum number of feature vector length
Mmax (V in equation (6)). The feature vectors for other
training models are padded with zeros to have the same
length Mmax. The number of output nodes is equal to the
number of training models.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the recognition sys-
tem, the images of eight di�erent tools [9] were used. Fig-
ure 4 shows the tool objects used in the experiments. Some
of these images are di�erent objects, others are similar ob-
jects (e.g. model2 and model3 or model6 and model7). The
former case shows the discrimination power of the features
in general, and the latter shows the ability to describe small
variations.

The recognition system was tested by adding random
Gaussian noise to the shape boundary points. This kind of
distortion is used in You and Jain [10], and Kauppinen et.

al. [11]. If the coordinates of the ith boundary point are
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Figure 4: The tool objects.

(x(i); y(i)), then the coordinates of the corresponding point
on the noisy boundary are given by:

xnoisy(i) = x(i) + drc cos(�i)

ynoisy(i) = y(i) + drc sin(�i)

where

r is a sample from Gaussian distribution N(0; 1),
d is the distance between successive boundary points,
�i is the tangent angle at boundary point i, and
c is a parameter which controls the amount of noise.

The points that caused crossover on the boundary will
be omitted. The measure of noise in an object contour is de-
termined by the percentage of the contour points which are
corrupted with noise. Figures 5(a) and (b) show the model4
object boundary with 50% and 75% noise levels. The size of
the test images is varying by �50%. The simulation results
are illustrated in table 1.

5. COMPARISON WITH TRADITIONAL

METHODS

In this section, the algebraic invariant moments and the
Fourier descriptors techniques are used to evaluate the per-
formance of our re�ned technique.

Hu [12] reported the mathematical foundation of the
two-dimensional moment invariant method and its appli-
cation to visual information processing. He used the six
absolute orthogonal invariant functions calculated for the
second and third moments.



Table 1: Recognition accuracy for the tool objects.

Noise (%) model1 model2 model3 model4 model5 model6 model7 model8

0 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100

20 100 100 100 100 100 100 100 100

30 100 100 100 100 100 100 100 100

40 100 95 100 100 100 100 95 100
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Figure 5: (a) A tool object boundary with %50 noise. (b)
A tool object boundary with %75 noise.

Table 2 shows the experimental results obtained with al-
gebraic invariant moments. The classi�er used is the mul-
tilayer feedforward network with one hidden layer. The
number of input nodes is taken to be equal to 6 and the
number of output nodes is 8.

Zahn and Roskies [13] developed a method for the anal-
ysis and synthesis of closed curves using the Fourier descrip-
tors method. These descriptors represent the shape of the
object in the frequency domain. A subset of the Fourier
descriptors is often enough to discriminate between di�er-
ent shapes. The Fourier descriptors used is based on the
normalized �� S diagram. A subset containing the twelve
lowest frequency coe�cients was used.

Table 3 shows the experimental results obtained with
the Fourier descriptors method for the two data sets. The
classi�er used is the multilayer feedforward network with
one hidden layer. The number of input nodes is twelve and
the number of output nodes is chosen to be equal to 8.

It should be noted that although the performance of the
Fourier descriptors method and that of invariant moments
method are comparable with our recognition system in the
case of noiseless objects, their performance was much worse
in the case of heavy noisy objects.

6. CONCLUSION

This paper has proposed a recognition system based on the
continuous wavelet representation and neural networks ap-
proach to recognize 2D objects under translation, rotation
and scale transformation. The technique is based on ex-
tracting the singularity position and its regularity by mea-
suring the decay of modulus maxima lines of the wavelet
transform. The experimental results show that the re�ned
technique gives better results than some traditional meth-
ods, such as the Fourier descriptors method and the invari-
ant moments method especially in the presence of noise.
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