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ABSTRACT

This paper presents an approach for the e�ective com-
bination of interpolation with a halftoning process to re-
construct a high resolution binary image from a lower res-
olution gray level one. We study a nonlinear interpolative
method that maps quantized low dimensional 2�2 image
blocks to higher dimensional 4�4 binary blocks using a ta-
ble lookup operation. In the generalized interpolative VQ
(GIVQ) approach [2], we jointly optimize the quantizer and
interpolator to �nd matched codebooks for the low and high
resolution images. Then, to obtain a binary interpolative
codebook to incorporate digital halftoning with interpola-
tion, we present a binary constrained optimization method
using GIVQ. In order to incorporate the nearest neighbor
constraint on the quantizer while minimizing the distortion
in the interpolated binary image, a deterministic-annealing-
based optimization technique is applied. With a few in-
terpolation examples, we demonstrate the superior perfor-
mance of this method over the NLIVQ method (especially
for binary outputs) and other standard techniques e.g., bi-
linear interpolation and pixel replication.

1. INTRODUCTION

Increasing image resolution is of great interest for many
imaging applications such as image enlargement (in medi-
cal imaging and digital photography), and enhancement of
coded images (in multimedia applications). The applica-
tion that motivated this work is the problem of gray level
scanning of text images at low resolution (e.g., 300 dpi) fol-
lowed by reproduction at a higher resolution (e.g., 600 dpi)
by printing on binary devices.

Standard approaches to interpolation rely on unrealis-
tic assumptions about images. Bilinear interpolation, for
example, assumes continuity of the image. Bicubic inter-
polation imposes continuity on both the image and its �rst
derivatives. Spline techniques maymake assumptions about
the continuity of even higher order derivatives. In e�ect, all
these standard methods make a lowpass assumption about
images. As an alternative to these standard techniques,
other interpolation methods exploit information relevant to
edge preservation to enhance the quality of the resulting
images. Median �ltering [4] preserves approximately the
sharpness of isolated image transitions. However, the edge
preserving property of the median �lter does not apply at
corners or certain other two dimensional structures. An-

other class of edge preserving interpolation methods are
the directional interpolation techniques [5] which perform
one-dimensional interpolation along the minimum variation
direction. One problem with directional interpolation tech-
niques is that downsampling in edgy regions introduces un-
certainty in the estimate of the orientation and location.
This can create large interpolation errors at sharp edges,
such as on the contours of the letters in text images. In
multiresolution methods [6] the available bandwidth is ex-
tended to half of the new sampling rate. These methods
exploit the regularity of edges across resolution scales to es-
timate the high frequency information that is required for
the interpolation.

In all of these interpolation techniques, better perfor-
mance comes at the expense of higher complexity than re-
quired by the standard linear methods. The focus of our
work is to produce an interpolated halftoned image that is
particularly appropriate for binary devices such as inkjet
printers. Halftoning is the process of rendering an orig-
inal continuous tone image (for example 256 gray levels)
into a binary image containing only two intensity levels
(black and white). Overviews of halftone algorithms with-
out image interpolation have been given in [7]. Interpola-
tion and halftoning, when performed in two separate steps,
are suboptimal and computationally expensive. Their sep-
arate treatments suboptimal because the interpolation de-
sign objective does not match the distortion measure used in
the halftoning process. This paper addresses the following
question: Can interpolation be combined e�ectively with
halftoning so that the overall computational cost is reduced
while maintaining a competitive quality? If the answer to
this question is yes, then what is the best method to use
for this problem? Vector quantization (VQ) is certainly a
reasonable solution. It has the characteristic that it can be
used to map a set of observable low resolution image blocks
into a collection of binary higher resolution reproduction
blocks.

In this paper, we propose a generalized interpolative VQ
(GIVQ) method [2] in which the interpolation and halfton-
ing steps are performed jointly under a common distor-
tion measure. The notion of generalized interpolative VQ
(GIVQ), has evolved from our earlier implementation of
nonlinear interpolative VQ (NLIVQ) [1], introduced by Ger-
sho [8]. As an alternative to the highly suboptimal NLIVQ
method, we propose GIVQ as a nonlinear interpolation tech-
nique based on deterministic annealing [11]. During the de-



sign phase of GIVQ, the training vectors are assigned to
clusters in a probabilistic fashion with probability distribu-
tions chosen to be Gibbs distributions. Consequently, the
joint optimization of the quantization, interpolation, and
halftoning can be formulated within a probabilistic struc-
ture.

2. IMAGE INTERPOLATION USING VQ

2.1. Interpolative VQ System

Interpolative VQ is a mapping of an observable random vec-
tor X to a �nite set of estimated values of a random vector
Y by table lookup. In our interpolative VQ, the encoder
takes 2�2 image blocks of a 300 dpi image as its input
and quantizes them based on the partitioning speci�ed by
the codebook C. These quantized 2�2 image blocks are
mapped to 4�4 image blocks by the interpolative decoder
(600 dpi VQ decoder) from codebook C�. In other words,
the interpolative VQ takes low dimensional feature vectors
X and maps them into increased dimensional signal vec-
tors Y producing a high resolution image. An interpolative
VQ system is fully speci�ed by the two codebooks, one (the
encoder codebook of size N labeled C in Fig. 1 containing
2�2 codewords) for the low resolution image blocks and the
other (the decoder codebook of size N labeled C� in Fig. 1
containing 4�4 codewords) for the corresponding high res-
olution image blocks, and a rule for mapping the feature
vectors to the signal vectors.

To train the interpolative VQ system, we require a set
of 300 dpi images and their 600 dpi counterparts. Inasmuch
as we did not have actual images at the two resolutions that
were carefully co-registered, we generated the 300 dpi low
resolution training images by lowpass �ltering the 600 dpi
training images using a simple separable �lter with a row
and column impulse response given by

h(n) = :25�(n) + :5�(n� 1) + :25�(n� 2) (1)

and downsampling by a factor of two horizontally and verti-
cally. With this approach, 2�2 blocks of the low resolution
training images correspond exactly to 4�4 blocks of the
originally scanned high resolution training images. These
pairs of blocks (xt; yt) in the low and high resolution spaces
were used to train the system.

2.2. Formulation of Generalized Interpolative VQAlgorithm

Generalized interpolative VQ (GIVQ) is based on GVQ [9].
In GVQ the estimate of a random vector Y is formed from a
random vectorX using an estimator h(�) that is constrained
to take on a �nite set of N values. The mapping h(x) is
viewed as a generalized vector quantizer (GVQ) that opti-
mally generates a quantized approximation to Y from an
observation of X. In the GIVQ a low dimensional feature
vector X is mapped into a increased dimension signal vector
Y producing a high resolution image. The GIVQ de�nes a
partition of the k-dimensional input space Rk into N re-
gions where N is the codebook size. The partition regions
Ri are de�ned as

Ri = fx 2 R
k : h(x) = yig i = 1; 2; : : : ; N: (2)
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Figure 1: Block diagram of the Interpolative Vector Quan-
tization method for text image interpolation.

The GIVQ design objective is to minimize the error of esti-
mating Y by h(x) de�ned as di(Y; h(x)). GIVQ is described
by the same block diagram as NLIVQ; i.e. as depicted in
Fig. 1, the GIVQ consists of an encoder followed by an in-
terpolative decoder. The encoder maps the low dimensional
input vector X to an index i 2 f1; 2; : : : ; Ng by applying
a nearest neighbor rule over a low dimensional codebook
C with size N . Then the interpolative decoder looks up
the corresponding increased dimension signal vector Y in
codebook C�.

The main di�erence between GIVQ and NLIVQ is that
NLIVQ minimizes the distortion in the input space (op-
timum quantizer), while GIVQ's objective is to minimize
the distortion in the output space. Consequently, unlike
NLIVQ, the codewords of the GIVQ in codebook C are
not necessarily the `centroids' of the input (feature) space
vectors assigned to the same partition. Like GVQ, for a
mean squared error distortion measure the optimum GIVQ
satis�es the necessary conditions given in [9].

To formulate the GIVQ problem, let the sets fxig
N
i=1

and fyig
N
i=1 be the codewords in the low and high dimen-

sional vector spaces, respectively. Also let df (�; �) and di(�; �)
be the distortion measure in the low dimensional vector
space X and increased dimension vector space Y , respec-
tively. Then, for a given set of training pairs T = f(xt; yt)g,
we want to optimize the codewords fxig

N
i=1 and fyig

N
i=1 so

that the total distortion in the signal space Y is minimized:

min
fxig;fyig

fDg = min
fxig;fyig

8<
:
X

(xt;yt)

di(yt; h(xt))

9=
; : (3)

Here h(�) is a GIVQ mapping function that is consistent
with the VQ nearest neighbor encoding rule:

�
if i = argmin

j
fdf (xt; h(xj))g

then let yi = h(xt)
(4)

From (3) and (4), it is obvious that the joint optimiza-
tion problem is not a trivial one. Deterministic annealing
DA has been shown by [11] to be a successful method for



solving the optimization problem while imposing the near-
est neighbor constraint given by (4). Therefore, we have
chosen the (DA) approach for the joint optimization of the
quantizer and interpolator.

3. OPTIMIZATION BY DETERMINISTIC
ANNEALING

3.1. GIVQ DESIGN METHODOLOGY

Deterministic annealing (DA) [11] is a probabilistic frame-
work to solve optimization problems. Although convergence
to the global minimum is not assured, it has been shown to
be a successful method for avoiding many local minima. DA
provides a probabilistic encoding rule for GIVQ that can be
exploited to enforce the nearest neighbor constraint on the
encoder while minimizing the distortion in the signal space
Y . Randomization of the partition subject to a constraint
on the encoder entropy results in a Gibbs distribution. This
data clustering becomes a fuzzy membership operation in
which each vector X is assigned to every cluster by associa-
tive probabilities given by the Gibbs' distribution [11]

p(x 2 Rj) =
exp(�df(x; xj))PN

k=1
exp(�df(x; xk))

j = 1; 2; : : : ; N; (5)

where  is a positive scalar parameter controlling the de-
gree of randomness. By this fuzzy membership, each input
vector X belongs to all of the clusters with a probability
that depends on its distance from the codewords represent-
ing those clusters. In this formulation it is assumed that
the data assignment is an independent operation that ig-
nores the correlation between adjacent image blocks. The
associated Shannon entropy for this random partitioning is
de�ned by

H = �
X
x

NX
j=1

p(x 2 Rj) log[p(x 2 Rj)]: (6)

Now the optimization of GIVQ can be formulated as the
minimization of an objective distortion D de�ned by (3)
subject to an encoder entropy constraint (6)

min
fxig;fyig;

F = min
fxig;fyig;

fD � � �Hg (7)

in which � is a temperature in the annealing process. By
this de�nition, we have an e�ective objective distortion.
The free energy F is minimized to obtain the minimal dis-
tortion D in the signal vector Y , while imposing the nearest
neighbor encoding rule by gradually reducing the random-
ness H through a gradually decreasing temperature �. Us-
ing (3), (6), and (7) gives

F =
X

(xt;yt)

NX
j=1

p(xt 2 Rj)fdi(yt; yj) + � log[p(xt 2 Rj)]g:

(8)
To obtain the necessary optimality conditions for minimiz-
ing F , we set to zero the derivatives of F with respect to
fxig

N
i=1, fyig

N
i=1, and . By solving the resulting equations

for the case of the squared-error measure in df(�; �) and
di(�; �), each representative in the signal vector Y is de�ned
as the center of mass of the fuzzy cluster

yj =

X
(xt;yt)

p(xt 2 Rj)yt

X
xt

p(xt 2 Rj)
j = 1; 2; : : : ; N (9)

and the corresponding representative in the feature vector
space can be derived as

xj =

X
(xt;yt)

(Fxj � Fx)p(xt 2 Rj)xt

X
xt

(Fxj � Fx)p(xt 2 Rj)
j = 1; 2; : : : ; N:

(10)
Here Fxj , and Fx are de�ned for any (xt; yt) as

Fx =

NX
j=1

p(xt 2 Rj)Fxj (11)

Fxj = di(yt; yj) + � log[p(xt 2 Rj)]: (12)

The scalar parameter  should satisfy the following opti-
mality equation

@F

@
=

X
(xt;yt)

NX
j=1

Fxjp(xt 2 Rj) �

NX
k=1

fp(xt 2 Rk)df(xt; xk)� df(xt; xk)g = 0:

To optimize F with respect to fxig
N
i=1, fyig

N
i=1 and 

at any given temperature �, we use (9) for the decoder pa-
rameters and a gradient descent method for both the scalar
and encoder parameters.

3.2. Algorithm Description

The algorithm starts at a very high temperature and small
value of  with only one initial representative in both the
feature and signal spaces (N = 1). As the temperature
decreases, the balance between distortion and entropy in
(8) changes toward less randomness. For each gradually
decreasing temperature, the representatives and scalar pa-
rameter are optimized. This procedure continues until �
reaches a critical value given by 1

�c = 2�
(CT

xyCxyC
�1

yy )
: (13)

Here � is an eigenvalue of its matrix argument, and Cxy and
Cyy are cross-covariance and covariance matrices de�ned for
each cluster by taking into account the probabilistic data
assignment

1This formula is derived in [11] for the case in which the fea-
ture space and signal space are the same.



C
j
xy =

X
(xt;yt)

p(xt 2 Rj)(xt � x̂t)(yt � ŷt)
T

X
xt

p(xt 2 Rj)
j = 1; 2; : : : ; N

(14)

C
j
yy =

X
(xt;yt)

p(xt 2 Rj)(yt � ŷt)(yt � ŷt)
T

X
xt

p(xt 2 Rj)
j = 1; 2; : : : ; N

(15)

where x̂t and ŷt are the mean values of xt and yt, respec-
tively. At the critical temperature, the codeword of the
critical cluster in the higher dimension space Y is split in
the direction of the eigenvector corresponding to �. Also the
split in the corresponding feature (low dimensional) code-
word X is initiated along the direction of the projection
of that eigenvector into the feature space. This procedure
of decreasing the temperature and optimizing (8) contin-
ues as described, and every time the temperature hits the
critical temperature of any cluster, the corresponding code-
word is split. By proceeding in this fashion, the number of
codewords increases to the desired value. At that point the
splitting is stopped and the temperature is driven to zero
while the parameters in (8) are optimized. In the limit as
� ! 0 (and a large value of ) the randomness is highly
limited while the distortion in the signal space is mini-
mized through (8). It is worth noting that to save memory
and computation cost, the training of the GIVQ algorithm
does not have to use the splitting procedure (starting from
N = 1) described above. Instead, it can be trained by
using a suboptimal method that randomly initializes both
feature space codewords fxig

N
i=1 and signal space codewords

fyig
N
i=1, then optimizes (8) with respect to the parameters

for each given temperature.

3.3. Binary Constrained GIVQ Algorithm for Halftoning

Our approach for combined interpolation and halftoning of
text images is to design an interpolative VQ whose encoder
codewords fxig

N
i=1 are gray level and decoder codewords

fyig
N
i=1 are binary. This would be a special case of GIVQ

in which a gray level low dimensional feature vector X is
mapped into a binary increased dimensional signal vector Y
producing a high resolution binary image. In the following,
we present a simple extension of the GIVQ algorithm for the
design of jointly optimal encoder and interpolative decoder
codebooks.

Here we assume that the range of image intensities is
[0; 1]. We use the previous training set (xt; yt) in the low
and high resolution space except that yt is a binary ver-
sion of the high dimensional signal vectors. One method
of imposing binary constrained codewords fyig

N
i=1 into the

optimization of free energy F in (8) is to use a simple
thresholding operation, which gives the nearest binary code-
word according to the mean-squared-error distortion mea-
sure. Consequently, we optimize F with respect to fxig

N
i=1,

2 by 2 overlapping

input blocks 2 by 2 output blocks

4 by 4 non-overlapping

output blocksinput blocks

2 by 2 non-overlapping

Figure 2: Illustration of context and non-context block
mapping.

fyig
N
i=1 and  at any given temperature � as it is described

in previous section, then we threshold the codewords fyig
N
i=1

and continue with the optimization of F at the next tem-
perature. By this iterative technique the initial binary
codewords are improved through the deterministic anneal-
ing process. It is important to note that both the decoder
codewords fyig

N
i=1 and the data distribution of the signal

vectors Y in this case lie on a vertices of a hypercube. Con-
sequently, the free energy F takes on only discrete values
as the annealing process proceeds. Thus, the optimization
by a gradient descent method is easily trapped in a local
minimum and is sensitive to the initial location of the en-
coder and decoder codewords. Hence, it is helpful to start
with only one codeword and use the splitting procedure de-
scribed in the previous section to avoid the local minima.

4. EXPERIMENTAL RESULTS

To demonstrate the successful interpolation of the text im-
ages using interpolative VQ, we conducted some experi-
ments. As mentioned earlier, we proposed GIVQ mainly
for simultaneously interpolating and halftoning of text im-
ages. We trained a binary constrained GIVQ and an NLIVQ
system over a training set consisting of a binary high reso-
lution (600 dpi) and its corresponding gray level low resolu-
tion (300 dpi) image. Both the NLIVQ and GIVQ systems
were trained using 8 point Times New Roman font text
then tested using the Courier font at the same size. In this
experiment, only a codebook of size 64 was designed.

Vector quantization by itself exploits the inter-pixel cor-
relation that exists within the 2�2 low resolution image
block, but it does not take advantage of the correlation
between adjacent image blocks. One approach to improve
the quality of the interpolated images is to use context in-
stead of encoding the input blocks independently. One pos-
sible solution is to increase the size of the image blocks,
but this requires a very large codebook size to improve the
performance, and this solution is not attractive because of
the computational cost required for its implementation. As
shown in Fig. 2, a more feasible solution is to map overlap-
ping 2�2 input blocks into 4�4 output blocks and then to
extract the four non-overlapping center pixels from the 4�4
output image blocks in the codebook C�. In this method,
each 2�2 input block overlaps three other input blocks.
Consequently each pixel in the low resolution image is used
four times in the interpolation process.

Fig. 3(a) and (f)2 show the 300 dpi gray level image and
the desired 600 dpi binary image, respectively. The results

2The font is magni�ed �ve times by sample pixel replication
so that �ne di�erences can be readily observed



of interpolation from 300 dpi to a binary 600 dpi image
using the pixel replication method, the bilinear interpola-
tion technique, and the NLIVQ algorithm are presented in
Fig. 3(b), (c) and (d), respectively. The binary images are
produced by thresholding the gray level high resolution im-
ages generated by these methods. Furthermore, Fig. 3(e)
shows the result of interpolation from 300 dpi to a binary
600 dpi image using the binary constrained GIVQ system.
By inspection of these �gures, we notice that the image gen-
erated by pixel replication is very jagged, and su�ers from
blocking e�ects. Bilinear interpolation results in fat charac-
ters. Moreover, the serifs on the letters are �lled in by this
method. It is also noticeable that thresholding NLIVQ pro-
duces burst errors. Comparison of the images shows that
the GIVQ produces the binary image that is closest to the
ideal binary image.

5. CONCLUDING REMARKS

In this paper, we presented two algorithms for text image
resolution enhancement. Although the training procedure
is computationally intensive, the interpolation requires only
a table lookup. We proposed the generalized interpolative
vector quantization (GIVQ) method to design jointly op-
timal codebooks for the encoder and decoder. Finally, we
solved the problem of the joint optimization of interpola-
tion and halftoning under a common distortion measure
by using a binary constrained deterministic annealing al-
gorithm. Consequently, by this method, the interpolation
and halftoning of images are carried out in a single step
by a simple table lookup operation. Our preliminary re-
sults showed better performance of GIVQ over NLIVQ for
binary images.
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(a)Blurred 300 dpi 8 point Courier font.

(b) High resolution binary image obtained by using pixel
replication and thresholding.

(c) High resolution binary image obtained by using
bilinear interpolation and thresholding.

(d) High resolution binary image obtained by the NLIVQ
method and thresholding.

(e) High resolution binary image obtained by binary
constrained GIVQ.

(f) Ideal 600 dpi 8 point Courier font.

Figure 3: Comparison of the results of the standard inter-
polation and halftoning techniques with those of the GIVQ
and NLIVQ systems with codebook size of 64 trained on
the 8 point Times New Roman font.


