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ABSTRACT

In this work we address the common problem of low bit rate image
coding, i.e. perceptual quality loss. We propose a novel scheme to
tackle this problem. The salient part of this work is to first encode
the most important visual features of images extracted from Sigma
filtering preprocessing. The preliminary results show that the im-
age decoded by our scheme contains much less artifacts comparing
to many other low-bit-rate decoded images. Our decoded image is
very pleasant to human eyes. Unlike other low bit rate progressive
coding methods, in which the low-bit-rate decoded image quality is
good only at low resolution, our scheme provides good perceptual
quality regardless of resolution size. With the advance of the In-
ternet and multimedia integration, our method provides a promising
way to make image browsing faster, and at the same time the image
perceptual quality is maintained.

1. INTRODUCTION

Low bit rate image coding is a challenging task. With the advance of
the Internet technology, more and more image data have been down-
loaded every day from the Net. The low bit rate image coding pro-
vides an advantage to users before they decided to download a whole
image. However, current state of the art low-bit-rate coded images
are perceptually pleasant at low resolution only. At normal resolu-
tion size, those images suffer from denoising effect 1 (e.g., ringing
at edges). In this work we devise a novel scheme to encode images
at low bit rate with good perceptual quality regardless of resolution
size. The main idea behind this novel method is based on Sigma fil-
ter smoothing technique. Sigma filtered images present an interest-
ing characteristic, i.e., small variance regions are smoothed out, but
strong edges are enhanced. Perceptual importance coding has been
around for many years. In the literature, morphologic [1, 2, 3, 4, 5]
based image coding algorithms have been proposed in many ways.
The main idea behind those methods is to combine morphological
operations in the transformation stage or data encoding stage. They
are not targeted for low bit rate coding. How to select perceptual
important features of an image automatically is a big research is-
sue. Here we present a prefiltering perceptual importance enhancing
method to encode images at low bit rates.

Due to the failure of encoding perceptual important features of
many state of the art image coders at low bit rates and the aforemen-
tioned Sigma filtering technique, We are motivated to think about us-
ing Sigma filter to preprocess an image to enhance perceptual impor-
tant features. It would transform a natural-scene image to a cartoon-
like image. Ideally the cartoon-like image is easier to be encoded at
low bit rate and it preserves all important information about how the
scene looks like, but smoothes out some low energy detail. Our hu-
man eyes are less sensitive to the cartoon-like image than the image
with some loss of information.

This paper is organized as follows: 1. An introduction to Sigma
filter concept. Since Sigma filtering technique is not well known in

the image coding circle, we will present it in detail. 2. Perceptual
importance coding. in this section we are to analyze an image pro-
cessed by Sigma filtering technique, some statistics are presented.
Perceptual importance concept and our coding scheme will be pre-
sented here as well. 3. Experimental results and conclusion.

2. SIGMA FILTERING

Under our prefiltering perceptual coding concept, it is necessary to
process the underlying image into piecewise smooth regions while
preserving even enhancing important edges. The traditional low pass
filters are not able to accomplish this goal. Fortunately, in image seg-
mentation literature there are several techniques being developed to
achieve such goal. Anisotropic diffusion [6], total variation mini-
mization [7, 8], and Sigma filter [9, 10] are among the most effi-
cient approaches. The anisotropic diffusion assigns different diffu-
sion constant to each pixel and start the diffusion process. The to-
tal variation minimization method treats this problem as an image
restoration problem and imposes the following regularization func-
tional:
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The anisotropic diffusion has the advantage of being suitable for par-
allel implementation but requires a lot of iterations to converge to a
piecewise smooth surface function. The total variation minimiza-
tion, on the other hand, can achieve a comparable result within a
much less iterations, but the computational complexity is very high
in each iteration.

To circumvent the potential obstacles with the above two meth-
ods, Sigma filter is considered as a good candidate. Next, We will
demonstrate that this technique is easy to implement and thus with
less computational complexity. For each operation is confined within
a predefined window, it is possible to take advantage of the parallel
computation technique to further increase its speed as well.

2.1. Original Sigma filter

An image can be treated as a 2-dimensional surface function. To
process that surface into piecewise smooth regions while preserving
important edges, first one has to identify pixels within the processing
window that belong to center pixel class, then apply a low pass filter
only within that region. By assuming the pixel distribution within a
small window is additive Gaussian noise process, the pixels value in
the window can be characterized as a mean� plus a Gaussian noise
termn (u = �+n). If one applies a threshold� to the window, with
� equal to2�, then the selected pixel value region contains95% of
the distribution of the center pixel class. The original Sigma filter
was based on this assumption [11].



2.2. Threshold Estimation and Edge Preserving

We should point out that, if we follow the modelu = � + n near
edges, with maximum likelihood (ML) estimation of the local sam-
ple variance within that small window. The estimate variance will
usually be much larger than the theoretical variance. Hence, if we
choose the� in the Sigma filter as 2 times the ML estimate of the
local sample standard deviation within the sliding window, the effec-
tive range[�2�; 2�] will cover two or more different regions across
the edge. As a result, the filter becomes basically a space variant low
pass filter, and the edge information will be lost during the process.
Therefore, a new thresholding method needs to be developed. C. Kuo
and A. Tewfik [10] have devised an efficient threshold estimation al-
gorithm. They estimate the local sample variance only at edge points
via the ML estimation. By smoothing and normalizing the histogram
of the estimated local sample standard deviation, we can treat the ob-
tained curve as a probability density functionp(x). Hence, the cal-

culated value� such thatP (�) = 0:1, whereP (�) =
R
�

0
p(x)dx

can be chosen as the threshold used in the Sigma filter.

2.3. Filter Design

The design of the Sigma filter is described as follows:

1. Apply the estimated� from the above subsection as the thresh-
old.

2. Iteration = 1 � � � I.

3. Slide a window with its size(2n+1)� (2m+1) through an
image with center pixeluij , n andm could be any integer.

4. Apply one of the following two threshold schemes:

� Fixed threshold:� = �, which is derived from previ-
ous threshold selection procedure.

� Adaptive threshold: To preserve less significant edges,
we can adopt the following equation:

� = ��max[0:2;
1

1 + �
�

]

Assuming� is the estimated local standard deviation.

5. Apply the following equations to determine class member-
ship:

�kl =

�
w(x) : (uij ��) � ukl � (uij +�)
0 : else

(1)

w(x) is a weighting function centered atuij . One obvious
choice is to setw(x) = 1.

6. The output pixel value~uij

~uij =

Pk=n

k=�n

Pl=m

l=�m
�kluk+i;l+jPk=n

k=�n

Pl=m

l=�m
�kl

(2)

7. Let

M =
X
kl

�kl

K = min[n+ 1;m+ 1]

If M < K, recalculate the mean of four immediate neighbor-
ing pixels as the center pixel and go back to step 5.

8. Until the entire image is processed.

9. Relax the threshold by a small number�, i.e.,� � � and go
back to step 2.

Note that the above computational complexity is very similar to the
median filter. Fig. 2 presents the Lena image and the Sigma filtered
one. One can see the low pass and edge-preserving nature of the
Sigma filtered image.

3. PERCEPTUAL IMPORTANCE CODING SCHEME

As mentioned in the introduction that the idea behind prefiltering
approach in low bit rate image coding is that the processed image
would carry the most perceptually important information for human
eyes. Lots of less important details of the image should be removed
from the filter. Our Sigma filter has proved the above statement vi-
sually after we see fig. 2. However, as far as the image compression
is concerned, we still need to find out if the filtered image carries
less information. Figure 3 shows histograms of non-processed im-
age and processed one. One can see that the histogram of the filtered
image tends to cluster into certain pixel values. The wavelet coef-
ficients of both images are shown in figure 4. One can see clearly
that the filtered one contains less coefficients. Figure 5 illustrates
more clearly about above observation. For any embedding coding
scheme (e.g., SPIHT [12]) or many advanced coding algorithms, the
threshold of the absolute wavelet coefficients that corresponds to low
bit rate range is from 16 to 32. At this range, the bottom figure of
figure 5 shows a reduction of 22% of significant coefficients of the
filtered image over the non-filtered one (look at threshold2i, where
i = 4; 5). In SPIHT those reductions means more details (lower
thresholded coefficients) could be sent out, so the better reconstruc-
tion quality is for the low bit rate imaging.

3.1. Coding scheme

Our proposed idea is simple, let us first Sigma-filter a natural image
to produce an edge-enhanced one. Then we use wavelet transform
to get a low-low band sub-image. This low-low band sub-image pre-
serves more strong edges than the one without pre-Sigma-filtering.
Because of vast area of a Sigma filtered image is smoothed out, and
“certain high frequency information is kept at low-low band”, now
we just need to use wavelet image coding techniques (here we use
SPIHT) to encode the low-low band sub-image at a moderate bit
rate. It in turn yields low bit rate bit stream. After decoding the
encoded image, we might enhance the image again by using Sigma
filter, due to the loss of high frequency bands (see fig. 6). Another
important point in our coding scheme is that we use a centering mask
that weighs heavily at the center of an image, so that the center area
gets more refinement. In SPIHT, it means that the root begins at the
center of the lowest frequency “low-low” band.

4. EXPERIMENTAL RESULTS AND CONCLUSION

Here we use our proposed method to encode Lena image (512x512)
to 0.10 bpp. In fig. 7 we can see that the decoded image before
post-filtering presents some aliasing effect at the edges. After Sigma
filtering the image (fig. 9), it looks a little bit better for our eyes.
Fig. 8 is the SPIHT [12] decoded image at 0.10 bpp. We can clearly
see our method looks much better than the SPIHT one. We have con-
ducted a small scale subjective testing, in which 4 experts in image
processing area are requested to give their opinion. All participants
chose our method for lesser visual artifacts. 3 out of 4 chose the
proposed image for better visual presentation. Figure 10 shows the
zoom-in version of Lena’s right eye. The SPIHT decoded image at



0.1 bpp shows many visual artifacts. Even though, the SPIHT en-
coded image is better than ours at PSNR comparison (30.0 dB and
28.1 dB at 0.1 bpp). At higher bit rate (0.5 bpp, after decoding the
difference image (fig. 11), and add to the Sigma-filtered compressed
one), both methods look very close to the original one (fig. 12).
The PSNR performance is similar for both of them (37.2 dB and
36.5 dB). We conclude that an image coded by our proposed method
presents better perceptual quality at low bit rates, especially, around
edges. This gain is due to the fact that Sigma filter can remove many
less important details of an image (let us call this phenomenon as
“pre-compression”). However, there is a price to pay: additional
processing time of Sigma filtering. For many applications (e.g., non
real-time transmission, Internet browsing, etc) it is not an issue. Be-
sides, our proposed Sigma filtering algorithm is only 2 to 3 times less
faster than a regular Median filter.

Figure 1: Denoising effect, wavelet coefficients greater than 64.
Ringing effect is very noticeable
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Figure 3: Histogram: left: original Lena, right: Sigma filtered
Lena
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Figure 4: The absolute value of wavelet coefficients greater than
16 (white): left: original Lena, right: Sigma filtered Lena
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Figure 5: Count of the absolute value of wavelet coefficients and
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number. Bottom: Ratio of the number of Sigma filtered coeff. over
the original coeff.
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Figure 2: Left: Sigma filtered Lena, middle: Pixel intensity of different rows of Sigma-filtered lena (left) and original lena (right), right:
Original Lena 512x512
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Figure 6: Proposed method

Figure 7: Reconstructed Lena using our proposed method at 0.10
bpp

Figure 8: SPIHT decoded Lena at 0.10 bpp



Figure 11: Difference between original Lena
and proposed 0.10 bpp Lena

Figure 12: Lena at 0.5 bpp, left: Proposed method, right: SPIHT

Figure 9: Post filtered image of figure 7

Figure 10: Comparison of eyes at 0.1 bpp. Top left: Original Lena,
top right: proposed method, bottom left: SPIHT, bottom right: post-
filtering


