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ABSTRACT

Two new extensions of Fuzzy C-means (FCM) algorithm which
minimize an objective function incorporating a validity index are
proposed. These algorithms are applied to color quantization of
images. In the first approach, we minimize an objective function
including a term for partition index. This algorithm attempts to
place the cluster centers such that the membership values of the
pixels are maximized. In the second approach, we minimize an
objective function including an inter-cluster separation term. The
goal here is to move cluster centers apart from each other towards
the convex hull of the color space, hence obtaining a color palette
which is more suitable for dithering, an operation generally ap-
plied after the quantization of the images.

1. INTRODUCTION

Many image display and printing devices allow only a limited
number of colors to be used. These colors constitute a palette,
which typically contains 256 or fewer entries. Original images rep-
resent each color component with one byte, therefore they can con-
tain up to 16 million different colors, which must then be mapped
to the available colors in the palette. This process of selecting a
suitable palette and mapping each pixel in the original image to an
entry in the palette is called quantization.

The C-means vector quantization algorithm has been long ap-
plied to image palette design, where palette is generally referenced
as codebook [1]. The C-means algorithm partitions a collection of
n 3x1 vectorsxj, j=1,...,n, into c clusters wherec is the codebook
size. The algorithm finds a cluster center in each group such that
an objective functionJ is minimized. Euclidean distance is com-
monly chosen as the dissimilarity measure. This schema is also
called hard quantization since each pixel is represented by only
one codebook entry.

Fuzzy quantization is a generalization of hard quantization
schema and the best known and most widely used fuzzy quantiza-
tion technique is the Fuzzy C-means (FCM) algorithm developed
by Dunn [2] and refined by Bezdek [3]. In the FCM algorithm,
each data point belongs to a cluster with a degree specified by a
membership grade between 0 and 1. Thus, the FCM algorithm
partitionsn vectors intoc fuzzy groups. Summation of member-
ship values is equal to unity:
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The objective function is defined as:

J =

nX
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(uij)
m d(xj;yi) (2)

wherem is the parameter of fuzziness andyi denote the set of
quantization colors. Although no formal method exists to define
the optimal value ofm, in the literature it is generally chosen
around 2. Both hard quantization and FCM algorithm use an iter-
ative procedure and produce locally optimal codebooks depending
on initial code vector locations.

Cluster validity measures have been used to evaluate the qual-
ity of the clusters in quantitative and objective fashion. The quality
of a clustering is indicated by a validity function which assigns a
number to the output of a classifier to associate the data points
to cluster centers. Examples of well known validity measures are
the partition coefficient and classification entropy [3], proportion
exponent [4], Dunn’s index [2] and Davies-Bouldin index [5].
Validity indexes are generally used to determine the best choice of
c to identify the structure in the data. In [6], it is also used for the
re-clustering of a fixed number (c) of clusters through a split and
merge approach to obtain a better codebook.

In this paper, we propose two new extensions of the FCM al-
gorithm which minimize an objective function incorporating a va-
lidity index. In the first approach, we minimize an objective func-
tion including a term for partition index. This algorithm attempts
to place the cluster centers such that the membership values of
the pixels are maximized. Although the intended application do-
main is image quantization, it is applicable to any classification
schema. In the second approach, we minimize an objective func-
tion including an inter-cluster separation term. The goal here is
to move cluster centers apart from each other towards the con-
vex hull of the color space, hence obtaining a color palette which
is more suitable for dithering, an operation generally applied af-
ter the quantization of the images [7]. Although this algorithm
is specifically designed for color image quantization, it may also
be applied to general classification problems. In Section II, we
introduce Fuzzy Quantization with Partition Index Maximization
(PIM). In Section III, Fuzzy Quantization with Inter-cluster Sepa-
ration (ICS) is introduced. The results of both approaches are in
Section IV. In Section V, the current study is evaluated and future
areas of research are pointed out.



Figure 1: (a)Percentage decrease in mse for m=1.3, (b)Percentage
decrease in mse for m=1.5

2. PARTITION INDEX MAXIMIZATION

Partition index is a measure of validity usingPj =
Pc

i=1
(uij)

m

as a measure of how well thejth data point has been classified.
The closer a pixel is to a codebook entry, the closerPj is to 1. If a
pixel becomes an outlier to all cluster centers, the value ofPj ap-
proaches1=cm�1, which is the minimum value it can have. There-
fore, if we aim to minimize the fuzzy euclidian distance measure
and maximize the membership values of the partitions, the objec-
tive function becomes

J(u; y) =

nX
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under the constraint of Equation 1. The parameter� controls the
weight of the second term and will be further examined. Using
the standard technique of Lagrange multipliers, the equation to be
minimized is

Jj(uj ; �) =
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where� is the Lagrange multiplier. The minimization ofJj(uj ; �)
proceeds as follows:

@Jj
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Solving foruij yields:
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from Equation 1:
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and plugging Equation 7 in Equation 6 we obtain:
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Note that if� = 0, the proposed extension of the FCM re-
duces to the standard algorithm. Because the terms of the form

Figure 2: Mse vs� for differentm values for the image ”peppers”.
Dotted line represents the mse obtained after k-means quantiza-
tion.

d(xj;yi)� � in Equation 8 may take 0 or negative values, result-
ing in undefined or negative membership values, we should define

uij = 1 for d(xj;yi) � � (9)

The physical interpretation of Equation 9 is to define a hard region
around quantization centers with radius�. BecausePj is indepen-
dent ofyi, the update equation is the same as in the FCM:

yi =
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(10)

3. INTER-CLUSTER SEPARATION MAXIMIZATION

In [6], the separation(si) of a fuzzy cluster(i) is defined as the
sum of the distances from its cluster center(yi) to the center of the
other(c� 1) clusters

si =

cX
t=1

kyi � ytk
2 (11)

In [7], Modified Binary Tree Splitting (MBTS) algorithm is sug-
gested to design a quantizer for color images in such a way that
better results are obtained after dithering, an operation generally
applied after the quantization of the images. Quantization of the
images causes some visual artifacts such as false edges and color
streaks. For this reason, quantization is generally followed by a
dithering operation. The goal is to hide these defects and to achieve
a more faithful reproduction of colors by using the averaging prop-
erty of the human eye. In a dithering technique called error diffu-
sion, this is achieved by spreading the quantization error to neigh-
boring pixels. The idea in MBTS algorithm is to obtain a wider
color space by displacing the pairs of quantization centers oppo-
site to each other, therefore creating the illusion of more colors.
For the same purpose, usingsi to give displacements to all quan-
tization centers towards the convex hull of the image color space
yields a larger volume of colors in the convex hull of the quan-
tization colors. We incorporatesi into the objective functionJ
to minimize the fuzzy euclidian distance and maximize the inter-
cluster separation. We define the objective function:



Figure 3: The percentage decrease in mse using HVS filter for 8
test images
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Again, we minimizeJ(u; y) using the Lagrange multipliers
method. Becausesi is independent ofu, the membership function
is the same as in the FCM. The update functionyi is obtained as
follows:
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It is clear that = 0 corresponds to the standard FCM algorithm.
Determination of the value of is investigated in Section 4.

4. RESULTS

4.1. Partition Index Maximization

We have implemented the PIM algorithm for color images. First,
we needed to determine the value of� used in Equation 3 that con-
trols the amount of contribution of partition index to fuzzy quan-
tization. Equation 9 dictates that the value of� should not exceed
the halfway between two cluster centers. Therefore, it is depen-
dent to the distribution of the cluster centers. A straightforward
approach is to set� to a fraction of the distance between the clos-
est two quantization centers, that is� = ��min[d(yi;yj)], where
0 � � < 0:5. Hence,� is dynamically determined. In Figure 1,

Figure 4: The percentage decrease in� E using HVS filter for 8
test images

percentage change in mean squared error (mse) vs.� for some test
images is shown.� = 0 corresponds to classical fuzzy quanti-
zation and as� increases, the hard region around the quantization
centers grows. In Figure 1(a), the fuzziness parameterm is set to
1.3 and in In Figure 1(b) it is set to 1.5. It is seen that the PIM al-
gorithm yields about 10% decrease in mse with respect to FCM for
m = 1:5, while the decrease in mse is about 5% form = 1:3. It is
interesting to see that the percentage decrease in mse is greatly ef-
fected by the choice ofm. That is, the fuzzier the quantizer, more
improvement in mse is obtained as� approaches to 0.5. The rea-
son can be explained as follows: If a pixelxj is in � region of the
quantization coloryi, there is not much doubt about which quanti-
zation center it belongs to. Therefore, PIM algorithm assignsxj to
yi in a hard manner, that isuij = 1. If xj is outside of� region of
all quantization centers, its membership value is calculated by the
fuzzy membership function defined in Equation 8. Ifm is small,
the degree of fuzziness is already low and effect of introducing
a hard region around quantization centers is also small. Ifm is
larger, the degree of fuzziness is larger and the effect of the hard
region defined by� increases. Therefore, better codebooks are ob-
tained by fuzzy quantization with respect to hard quantization, but
even better codebooks are obtained by a semi-fuzzy quantization
schema.

This result brings out the question of the effect ofm and how
� contributes to the resultant mse for color image quantization.
In Figure 2, the change in mse vs� for different m parameters
is shown for the image ”peppers”. It is seen that the value of
m plays an important role for fuzzy quantization, and our experi-
ments show that settingm to 1.3 produces satisfactory results for
most images. However, introducing a hard region around quanti-
zation centers further reduces mse, more for relatively higherm
values. Therefore, quantization process becomes less sensitive to
the m parameter and lower mse values are obtained for anym
value with respect to the FCM algorithm.

We also measured the error after applying the modulation trans-
fer function (MTF) of human visual system (HVS) [8] [9] to re-
sulting images. We transformed the color image to a gray level
image by calculating the perceptual lightness at each pixel, filtered



Figure 5: (a) The percentage of the pixels in the hard region vs�
for some test images, (b) The percentage increase in rct/iteration
vs � for some test images

with the HVS filter, and computed the mse afterwards as in [10].
The results are presented in Figure 3 for 8 of the test images.

It is seen that there is a perceptual improvement in 7 images. Al-
though one of the images has a slight increase in mse after HVS
filter is applied, it is less than 1%.

The color differences (�E) of the test images inL�a�b� co-
ordinate system [11] is also calculated:

�E = [(�L�)2 + (�a�)2 + (�b�)2]1=2 (14)

The results are seen in Figure 4 for 8 test images. In general, there
is a decrease in color differences with respect to FCM quantization
for most images, resulting in perceptually better quantized images.

Introducing a hard region also effects the speed of the quan-
tization. The membership values of the pixels in the hard region
do not need to be calculated. In Figure 5(a), the percentage of the
pixels classified in a hard manner for some specific� values are
seen. If� is chosen to be close to 0.5, about 40% of the pixels
are classified in a hard manner on the average. This schema has
an accelerating effect for most images. The increase in relative
computation times (rct) per iteration vs� is given in Figure 5(b).
As � approaches to 0.5, each iteration gets about 10% faster than
it is in FCM. The percentage increase in rct with respect to FCM
algorithm is calculated for test images. In general, the algorithm
converges faster as hard region grows out. The percentage increase
in rct for �=0.49 is around 10-15% as shown in Figure 6.

We also implemented the PIM algorithm for 2 dimensional
test data given in [6]. The data in Figure 7 consist of 2 clusters
which are distinctly apart. Figure 7(a) shows the partition imposed
by FCM with 2 clusters form = 1:3. The FCM algorithm tries
to partition the feature space into equal size clusters. The classi-
fication imposed by the PIM algorithm with� = 0:4 is seen in
Figure 7(b). The PIM algorithm assigns higher membership val-
ues to nearby vectors and lower membership values to further vec-
tors. This is seen in Figure 8, where the membership functions
of both FCM and PIM algorithms are sketched in 2 dimensions.
Therefore, better performance is obtained by PIM algorithm if the
clusters are relatively compact.

4.2. Inter Cluster Separation

The ICS algorithm is tested with various color images. The true
color test images are first quantized to 16 levels and dithered us-
ing ICS algorithm and Floyd-Steinberg error diffusion filter. The

Figure 6: The percentage increase in rct for�=0.49 for some test
images

Figure 7: Two partitions obtained by (a)FCM (m=1.3) (b)PIM
(m=1.3� = 0:4)

goal is to obtain perceptually better images after dithering. There-
fore, the error is measured after applying the modulation transfer
function (MTF) of HVS to the resulting images.

A key issue is the determination of the parameter in Equa-
tion 13. It is the parameter controlling the degree of the deviation
of quantization centers towards the convex hull of the color space
of the image. The objective function in Equation 12 is normal-
ized by1=n to make independent of the image size. Therefore
it should be a small number to perturb the quantization centers to-
wards the convex hull. Setting = 0means no perturbation, hence
it corresponds to FCM. If is set to a large number, quantization
centers may get too far away, even beyond the convex hull of the
color space, thus clipping may be necessary and the resulting code-
book will not represent the original image. Therefore, parameter
 will either be set to a small constant or it will be determined dy-
namically. In our experiments, we used both approaches to quan-
tize the images to 16 colors. We saw that although = 0:0005
gave good results for most images, it needed some adjustment for
better results for some of the images. Setting to some fixed small
value in the beginning and slowly decreasing it resulted in a more
robust schema for obtaining the desired enlarged palette. We used
 = 0:001 as the initial value and modified it in subsequent itera-



Figure 8: Membership functions (dotted line: FCM (m=1.5), solid
line: PIM (m=1.5� = 0:3))

tions according to

 = 
"c
"p

(15)

where"c is the amount of error in current iteration and"p is the
error in previous iteration.

In Figure 9, the results obtained for four different test images
are presented. The vertical axis represents the percentage change
in mse with respect to the quantized image with FCM algorithm
(m = 1:3). The first set of data along the horizontal axis is the
percentage increase in mse after ICS algorithm is applied for quan-
tization. It is seen that the mse is generally higher than the FCM
results. The second entry along the horizontal axis represents the
change in mse after the images quantized with FCM algorithm are
error diffused by Floyd-Steinberg filter. As expected, the error
diffusion process introduces some improvement to the quantized
images. The last set of data along the horizontal axis is the per-
centage decrease in mse after the image quantized with ICS algo-
rithm is error diffused. It is seen that there is further improvement
in the perceived error.

The examination of the resultant palettes for test images ob-
tained from FCM and ICS algorithms show that the color space
covered by the palette produced by the ICS algorithm is larger and
the resultant mse after HVS filter is 15% smaller.

5. CONCLUSIONS

Two new extensions of FCM algorithm are introduced. The PIM
algorithm is used to minimize an objective function including a
term for partition index. The PIM algorithm sets a hard region
around quantization centers and assigns higher membersip values
to nearby vectors, lower membership values to further vectors. The
resultant effect is lower mse and faster convergence for most im-
ages. The PIM algorithm may be viewed as a semi-fuzzy quanti-
zation technique. It may also be used for classification purposes.

The ICS algorithm is specifically developed to obtain better
images after error diffusion, which is applied after quantization to
remove side effects like false edges and color streaks. The goal
is to enlarge the convex hull of the quantization colors to obtain
the illusion of more colors after error diffusion. Although the mse

Figure 9: Percentage increase in mse using HVS approach: 0. Ref-
erence is the mse after fuzzy quantization(FCM) 1. Quantization
with ICS algorithm 2. Error diffusion after FCM 3. Error diffusion
after ICS

increased for most images after quantization, generally lower mse
values are obtained after error diffusion compared to the use of
FCM for quantization.

Our future research will include combining fuzzy quantization
and error diffusion algorithms to obtain perceptually better images
after error diffusion.
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