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ABSTRACT

Some recent normalized constant modulus algorithms
possess surprisingly improved error performance surfaces
(EPSs). In this paper, we look at the EPSs of these al-
gorithms in the symbol-spaced setting. The lack of channel
disparity in the fractionally-spaced setting is also consid-
ered. It is found that normalization has a decreasing e�ect
as the equalizer length is increased and causes the station-
ary points to drift. While the drift is small for the Desirable
Local Solutions (DLSs), it is more signi�cant for the Unde-
sirable Local Solutions (ULSs) some of which cease to exist.

1. INTRODUCTION

Experimental evaluation of many fractionally-spaced blind
channel equalization algorithms conclude with problems of
robustness when real world signals are used. For instance
the condition that the subchannels must have no common
zeros is frequently violated in mobile communication chan-
nels [1]. Since the channel disparity is lost, ULSs exist and
we are ironically back to the basic limitation of symbol-
spaced blind equalizers. At this point, one can safely an-
ticipate that any algorithm with improved performance in
the symbol-spaced setting will also perform better in the
fractionally-spaced setting [2].
In this paper, the results in [3, 4] are extended. We use

the following assumptions; A1) The channel input a(k) is
an i.i.d, stationary, real and binary signal, A2) There is no
channel noise, A3) The channel and equalizer �lters for the
symbol spaced setting are respectively

H(q�1) =

nX
i=0

hiq
�i; W (q�1) =

mX
j=0

wjq
�j (1)

where hi, wj are real, (m;n) <1 and q�1 is the unit delay,
A4) The channel does not have any transmission zeros.
The relationship between the equalizer input vector,

x>(k) = [x(k)x(k� 1):::x(k �m+ 1)] (2)

and the transmitted symbols is x(k) = Ha(k), where H is
the (m+1)�(m+n+1) Sylvester Convolution (SC) matrix
and

a>(k) = [a(k)a(k � 1):::a(k�m� n+ 1)] (3)

The equalizer output is de�ned as y(k) = x>(k)w(k), where
w(k) is the equalizer coe�cient vector.
The SCS-1 [3, 4], unnormalized SCS-1 (USCS-1) and CM

algorithms are considered whose update equations are re-
spectively given by

w(k+ 1) = w(k) +
�

kx(k)k22
(1� jy(k)j) y(k)x(k) (4)

w(k + 1) = w(k) + � (1� jy(k)j) y(k)x(k) (5)

w(k + 1) = w(k) + �
�
1 � y2(k)

�
y(k)x(k) (6)

2. ERROR PERFORMANCE SURFACES

Remark 1 Under A1, A2 and A3, the distribution of the
channel output, x(k), is discrete and symmetrical. Further-
more, the joint distribution of the equalizer input vectors is
described by

(X ;P)
def
=
�
(x[1]; p[1]); (x[2]; p[2]); � � � ; (x[D]; p[D])

	
(7)

with the probabilities p[m]
def
= P (x(k) = x[m] [ x(k) =

�x[m]), since the gradient and the Hessian expressions to
follow are not in
uenced by the sign of x(k). 2
The mean gradient vector corresponding to (4) is given by

gS(w) = E

�
(jy(k)j � 1) y(k)

x(k)

kx(k)k22

�
(8)

which by using Remark 1 can be converted into

gS(w) =

DX
m=1

p[m]

�
jx>[m]wj � 1

� x[m]x
>
[m]

kx[m]k22
w (9)

Any stationary point w� of the SCS-1 algorithm satis�es
gS(w�) = 0. Let us de�ne

�S
def
=

DX
m=1

p[m]

x[m]x
>
[m]

kx[m]k22
;�S(w)

def
=

DX
m=1

p[m]jx
>
[m]wj

x[m]x
>
[m]

kx[m]k22
(10)

then gS(w) = [�S(w) � �S]w, and the Hessian matrix is

HS(w)
def
=

@g>
S
(w)

@w = 2�S(w)��S. Similarly, we have for
the USCS-1 and the CM algorithms; gU (w) = [�U(w) �
�]w, HU (w) = 2�U(w)��, gG(w) = [�G(w)��]w, and
HG(w) = 3�G(w)��, where

�
def
=

DX
m=1

p[m]x[m]x
>
[m];�U (w)

def
=

DX
m=1

p[m]jx
>
[m]wjx[m]x

>
[m]

(11)

�G(w)
def
=

DX
m=1

p[m](x
>
[m]w)

2x[m]x
>
[m] (12)

The nature of each individual stationary point on the EPS
is determined from the eigenvalues of the Hessian matrix

as follows. Let �
def
= f� : � = eig [H(w�)]g then for

(�i; �j) 2 �, we have the following cases; f8�i > 0g ,



w� local minimum, f8�i < 0g , w� local maximum,
f9(�i > 0; �j < 0)g , w� unstable, H is inde�nite and
f9�i = 0g , w� degenerate1.

3. VANISHING LOCAL MINIMA OF
NORMALIZED ALGORITHMS

In this section, we �rst demonstrate a special case where
ULSs are avoided by normalizing the gradient vector. We
then discuss the e�ect of normalization in the general case.
Case 1(n = 1;m = 1) Take h0 = 1. Then, H(q�1) =
1 + h1q

�1, W (q�1) = w0 + q�1w1. Due to A4; h1 6= �1,

and therefore D = 4, p[i] = 1=4. Let ~h1
def
= 1�h1

1+h1
. Then,

X = (1 + h1)�

�h
1
1

i
;

�
1
�~h1

�
;

�
~h1
1

�
;

�
~h1
�~h1

��
(13)

It is easy to show that �S = 1
2I and

� =

"
2(1+~h21)

(1+~h1)2
1�~h1
1+~h1

1�~h1
1+~h1

2(1+~h21)

(1+~h1)2

#
(14)

Let Mi
def
= 1

(1+h1)2
x[i]x

>
[i]. We then have

�S(w) = 1
2j1+~h1j

�
jw0+w1j

2 M1+
jw0�~h1w1j

1+~h2
1

M2

+ j~h1w0+w1j

1+~h2
1

M3 + jw0�w1j

2j~h1j
M4

�
(15)

�U (w) = 2
j1+~h1j

3 (jw0+w1 jM1+jw0�~h1w1jM2

+ j~h1w0+w1 jM3 + j~h1jjw0�w1jM4) (16)

�G(w) = 4
(1+~h1)

4 ((w0+w1)
2M1+(w0�~h1w1)

2M2

+ (~h1w0+w1)
2M3 + ~h21(w0�w1)

2M4) (17)

Both components of gS;U;G(w) = 0 are shown in Fig. 1
for h1 = f0:4; 0:47; 0:6g. The shaded regions indicate indef-
inite Hessian matrices. The intersections of the solid and
dashed lines outside the shaded regions denote the stable
stationary points on the EPSs. The DLSs are marked as
\D" and the ULSs are marked as \U". The DLSs lead to
minimum InterSymbol Interference (ISI) after equalization.
All other solutions are labeled as undesirable. All solutions
in this special case lead to \open-eye" at the output, since
H(q�1) = 1 + h1q

�1; h1 6= 1. However, note how the ULSs
vanish for the SCS-1 algorithm when h1 is varied from 0.4
to 0.47. In fact, the two components that null the gradient
vector only meet at two points for h1 > 0:45. In the USCS-
1 and CM algorithms, however, the ULSs exist regardless
of the value of h1.
Case 2(1 < (n;m) < 1) Our objective is to describe the
underlying mechanism leading to the above results where
some ULSs cease to exist for the SCS-1 algorithm. Here we
take khk22 =

Pn

i=0
h2i = 1 without loss of generality. By

using

x(k) =

nX
j=0

hja(k � j) (18)

1A dense neighborhood of w� satis�es g(w�) = 0.

the normalization term can be written as

kx(k)k22 =

nX
j=0

nX
l=0

hjhl

mX
i=0

a(k � j � i)a(k � l � i)

= (m+ 1) (1 + cm(k)) (19)

where

cm(k)
def
=

nX
j=0

nX
l=0;l 6=j

hjhl
~a>(k� j)~a(k � l)

m+ 1
(20)

and ~a(k)
def
= [a(k)a(k � 1) � � � a(k�m+ 1)]>.

Remark 2 For binary, i.i.d a(k); Efcm(k)g = 0 and
i) cm(k) > �1 since kx(k)k22 > 0,
ii) limm!1 cm(k) =

PP
hjhl Efa(k � j)a(k � l)g| {z }

=0;l6=j

= 0,

iii) n = 1) 8m; cm(k) < 1,
iv) n > 1, for su�ciently large m, P (cm(k) > 1) � 0. 2
Remark 2.ii indicates that the variation of the normaliza-
tion, kx(k)k22, will be less signi�cant compared to its mean
value for large m. Therefore, the normalization has a de-
creasing e�ect as the equalizer length is increased. Remark
2.iii can be shown by using standard vector inequalities.
Showing Remark2.iv requires some sort of statistical model
for the distribution at the channel output. Closed form dis-
tributions are not available but the conditional Gaussian
model in [5], and the series expansion of the associated dis-
tribution in ([6], pp.93-95) can be used.
From (5), the stationary points of the USCS-1 algorithm
satisfy

gU (w�) = Ef(jy(k)j � 1)y(k)x(k)g = 0 (21)

By using x(k) =Ha(k) and y(k) = x>(k)w� in the above

HEf(jy(k)j � 1)a(k)a>(k)gs�| {z }
def
= vU

= 0 (22)

where s�
def
= H>w� is the parametrization in the com-

bined space corresponding to w�. For the symbol-spaced
setting no �nite dimensional equalizer parametrization en-
sures jy(k)j = 1 and all stationary points are such that
vU 2 N (H) 2.
The stationary points of the SCS-1 algorithm satisfy

gS(w�) = E

�
(jy(k)j � 1) y(k)

x(k)

kx(k)k22

�
= 0 (23)

Using x(k) =Ha(k), y(k) = x>(k)w� and s� = H>w�

HE

�
(jy(k)j � 1)

a(k)a>(k)

kx(k)k22

�
s� = 0 (24)

Therefore, we are interested in w� such that

vS
def
= E

�
(jy(k)j � 1)

a(k)a>(k)

1 + cm(k)

�
s� 2 N (H) (25)

where we have dropped the constant m + 1 in (19), since
it has no in
uence on the nature of the EPS and can be
regarded as a part of the step-size, �, of the adaptation pro-
cedure. Taking m su�ciently large so that jcm(k)j < 1 from

2N (H) denotes the null-space of H.



Remark 2.i,2.iv, we use 1
1+cm(k) = 1 +

P1

i=1 i!(�1)
icim(k)

in (25) and get

vS = vU +

1X
i=1

i!(�1)ivi (26)

where vi
def
= E

�
cim(k)(jy(k)j � 1)a(k)a>(k)

	
s�; i = 1; : : :.

For a stationary point, w�, of the USCS-1 algorithm, we
have H vU = 0. For the same w�, however, the normalized
algorithm has

H vS = H vU| {z }
=0

+

1X
i=1

i!(�1)i H vi
?
= 0 (27)

and in general the second equality in (27) is not satis�ed.
Therefore, the stationary points of the unnormalized algo-
rithm drift when normalization is introduced. This can be
veri�ed by inspecting Fig. 1-(b),(c). The amount of drift
varies according to the nature of the local solutions being
desirable or undesirable. From the de�nition of vi, the drift
of the DLSs, where jy(k)j 
uctuates closest to unity, will be
less signi�cant compared to the drift encountered by the
ULSs where jy(k)j is considerably less than unity. Some
ULSs may disappear all together as in Fig. 1-(e),(f) or Fig.
1-(h),(i).

4. LACK OF CHANNEL DISPARITY AND
NORMALIZATION IN THE

FRACTIONALLY-SPACED SETTING

For simplicity, consider a fractionally-spaced setting where
there are two subchannels H1(q

�1), H2(q
�1) with equal

length and the equalizer �lters W1(q
�1), W2(q

�1) sat-
isfy the length condition. Assume that the subchannels
fail the zero condition and the common zeros of H1(q

�1),
H2(q

�1) are denoted by T (q�1). In other words, H1(q
�1) =

~H1(q
�1)T (q�1), H2(q

�1) = ~H2(q
�1)T (q�1). Then, the gra-

dient vectors corresponding to the unnormalized SCS-1 al-
gorithm at a stationary point W� = (w1;�;w2;�) is

GU (W�) =

�
~H1
~H2

�
TEf(jy(k)j � 1)a(k)a>(k)gs� = 0

(28)

where ~H1, ~H2, and T are SC matrices and

y(k) = x>1 (k)w1;� + x
>
2 (k)w2;� (29)

s� = T>( ~H
>
1 w1;� + ~H

>
2 w2;�) (30)

Since ~H1(q
�1) and ~H2(q

�1) do not have any common zeros,
it is su�cient to look at

�GU(W�) = TEf(jy(k)j � 1)a(k)a>(k)gs� = 0 (31)

Similarly, for the normalized algorithm

�GS(W�) = TE

�
(jy(k)j � 1)a(k)a>(k)

a>(k)(H>1 H1 +H
>
2 H2)a(k)

�
s� = 0

(32)
If the length of the equalizers is su�ciently long, we can
expand the denominator in (32) and reach the same ob-
servation that a drift will be introduced to all stationary
points if normalization is in place and the drift is most sig-
ni�cant for the worst undesirable stationary point of the
unnormalized algorithm. Therefore, normalized algorithms
are expected to have better convergence properties in the
fractionally-spaced setting. This con�rms the results in [2],
where the CM algorithm fails to open the eye under lack
of channel disparity, but the normalized CM or the SCS-1
algorithms open the eye after a small number of iterations.

5. CONCLUSIONS

This paper shows that normalization of the gradient vec-
tor of a gradient-descent adaptive algorithm (as in NLMS)
has signi�cant merits on multimodal EPSs encountered in
blind equalization. It is demonstrated that ULSs may cease
to exist due to normalization. The results suggest that nor-
malization will increase the robustness of blind fractionally-
spaced equalizers under lack of channel disparity con�rming
earlier experimental results [2].
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Figure 1. Minima of the Godard (CM), Unnormalized SCS-1 and SCS-1 algorithms for a two-tap channel: (h1 = 0:3:(a),(b),(c)),
(h1 = 0:47:(d),(e),(f)), (h1 = 0:6:(g),(h),(i)), and a two-tap equalizer. \D": desirable, \U": undesirable solutions.


