A FAMILY OF NONLINEAR EQUALIZERS:
SUB-OPTIMAL BAYESIAN CLASSIFIERS

J. R Montalvao F*?, B. Dorizzf” , J. C. M.Mot&
DUniv. Tiradentes R.Lagarto, 264, 49010-390, Aracaju-SE, Brazil jugurta.montalvao@int-evry.fr

@|nst.Nat. Télécom./JEPH 9, Rue Charles Fourier 91011 Evry France Bernadette.Dorizzi@int-evry.fr
®Univ.Fed.Ceara/CT/DEE C.P.6001, Fortaleza-CE Brazil 60455-760 mota@dee.ufc.br

ABSTRACT mind, we propose, in this work, a new method of reducing the
MAPSD (per blocks) equalizer complexity using an explicit
A family of sub-optima Bayesian equalizers is proposed in two estimation of the channel parameters.

versions: feed-forward and decision feedback. We show that this
family of equalizers provides a range of gradua choices
concerning the tradeoff between equalizer complexity and
symbol error rate (SER). We aso point out the SER equivalence
between the simplest proposed structure (the simplest equalizer
of the family) and Wiener linear equalizer (or the decision

For that purpose, we perform a Bayesian classification using a
multi-gaussian approximation of the probability density function

of each class (one class for each element in the discrete alphabet
of modulation). The quality of the approximation depends on the
number of gaussians in the approximation.

feedback equalizer for the decision feedback version). Some The proposed structure is presented in two versions: feed-
simulations results are also presented. forward sub-optimal Bayesian equalizer (SBE) and a decision
feedback sub-optimal Bayesian equalizer (DF-SBE). The first

1. INTRODUCTION one is similar to a gaussian Radial Basis Function (RBF) network

where each RBF is thus centered at one of the previously

Intersymbol interference (1Sl) is a typical problem in digital calculated centers and the whole input signal, structured as a
communication systems. It occurs when the communication random vector, passes through a nonlinear transformation

channel has a considerable “memory”, which overlaps distinct corresponding to the RBF network. Equivalently, the DF-SBE
transmitted symbols. In such cases, special filters, calleduses the previously estimated symbols to outperform the SBE in
equalizers, are used in order to reconstruct the transmittedlow noise environments. Then, its structure is similar to a
symbols by combating the ISI effect. recurrent RBF.

Linear equalizers have been used for long time. Their importanceThis paper is organized as follows. In Section 2 we present the
is associated to their low complexity and theoretical tractability. system model. The forward and decision feedback versions of the
However, it has been shown [2] that the optimum equalizer isproposed family of equalizers are presented in Section 3. In
nonlinear in all realistic cases where noise is present and theSection 4 we discuss the trade-off between complexity and
channel is non-minimum phase. Indeed, considering the performance for such an approach. We present some illustrative
equalization problem as a classification one, the optimum symbolsimulation results in Section 5, for BPSK and 4-QAM
detector is the maximum a posteriori symbol-by-symbol detector modulation schemes. Finally, we summarize our major findings
MAPSD, proposed by [9]. Considering the symbol error rate and outline our future work in Section 6.

(SER), the MAPSD is better than the popular Viterbi equalizer

[10], which is actually an efficient implementation of the 2. SYSTEM MODEL

maximum likelihood sequence estimation (MLSE). However, |, yhis work, we consider a particular communication scheme
despite its desirable performance, the MAPSD is strongly limited o e the digital data are drawn with equal probability from a

by its inherent structure complexity. finite alphabet{as :1<s< S}, forming an i.i.d. sequenca(n)
A possible simplification of the MAPSD consists in segmenting
the full vector of observations in blocs and to proceed as if the
samples in these different blocs were mutually independent. Ingaussian with zero mean and variangg . The channel model is
some works (e.g. [3-5]), this simplification has been used in 5 FIR filter, whose impulse response is of lentthFigure 1

order to implement nonlinear equalizers with Radial Basis shows a schematic representation of such a model:
Function (RBF) structures. Indeed, in such approaches, the

channel states are points in a finite dimensional space and therf;urther, it is useful to define some column vectors:
clustering methods are applied over the channel outputs in order,
to reduce the complexity of the RBF equalizers. Several different
methpds have been proposed in order to find the clugter centers,a(n): [a(n) a(n _ d) a(n “N-M +1)Ir
ranging from k-means to Neural Network based algorithms[6].

of variance g, and the noiseb(n), is additive, white and

symbol data block:

Actually, in such approaches, finding the cluster centers® Channelimpulse responses[f, f, - f,]

corresponds to an implicit channel estimation. Keeping this in
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Figure 1. System Mode!.

»  sampled noise block:
b(n)=[b(n) b(h-1) - bn-m +1)]
»  sampled received signd:
x(n)=[x(n) x(n-1) x(n-M +1)]'
We also define the convolution matrix:

of, 00O

g. . 0

a- g

F = ng—l fD E
o - 0
H 0 fN-l EM+N—1)><(M)

And now we can write: x(n)=c(n)+b(n)=F"a(n)+b(n),
where C(n) isthe channel state vector.

3. THE PROPOSED FAMILY OF
EQUALIZERS

3.1 TheFeed Forward Version

Given a block of observations x(n), the probabilistic symbol-

by-symbol algorithm (also called maximum a posteriori symbol-
by-symbol (MAPSD) or full Bayesian equdizer) choose the

symbol a, which maximizes the conditional probability:
S = argmax Pr(a(n -d)=a,| x(n)).

Using the Bayes rule, the conditional probability density function
(pdf) associated to each symbol in the modulation aphabet, is

given by:
):

Prix(n)| a(n-d)=a, JPr(an-d)=a, )
Pr(x(n))

d
Prla(n-d)=a, | x(n)= PX; /z(p

20;

"
where @(x)= ! epo_ (-c) Z(X_C')E and each
Yy 0
channel state (or center) forming the set: {ci 1<i< SM”H} isa
conditional mean of thereceived signal vector:
C = E{x(n)| a(n) = ai} =FTa, (01)
where @, is a possible sequence of M + N —1 symbols. The
superscript H denotes Hermitian transposition.

The full Bayesian equalizer may be summarized as:

a(n-d)= Decgz at, k)

where f,, (x(n))=Pr(a(n-d) =a, | x(n)).

This equalizer is optimum in the sense of minimizing the
probability of a symbol error [2]. However, its large
computational burden is the major shortcoming of this algorithm.

Before introducing the genera formulation of the new equalizer,

it's worth showing a particular case of our approach which links
the Wiener equalizer (nonparametric technique) and a kind of
suboptimum Bayesian equalizer (parametric technique).

In fact, if we split the S"*"™ centers inS clusters, whose
centers are given by:

¢,. =Ex(mla(n-d)=a}
¢,.=F'[oo .. a ..o (02)

S
1
d

we are able to approximate eaanditional pdf by one gaussian

(with ellipsoidal basis) :
a3 a0

qZS(x):expE( ny—c( )E

whereR . = E{{x(n) ~fa(n - d))(x(n) ~fra(n-d))'}
=g?(F"F-f."f.)+ gl is the within class dispersion matrix
[1] of each cluster andf, = [fd ] is an
auxiliary vector.

fy. (x(M)=

fd—1 d M+

Despite this rough pdf approximation, it's possible to show [7]
that the equalizer:

a(n-d)=Decty a T, ()

and the Wiener linear equalizer provide the same decision
boundary in the M-dimensional decision space. In others words,
they provide both the same SER.

In fact, we can generalize the idea of clustering centers with a
number of clusters ranging from S to  S“*™*. In order to do
that, we calculate the S™*** cluster centers by the generalization
of the equation 02:



Clo(rs.e) =E{X(N)] a(n-d -P)=a,,...
..,an-d)=a,..,a(n-d+Q)=a,} 1<7,56<S
or, equivaently
Cgrs)=[0 ... 0 & ..a .. a O .. OF

le dT d*rQT
(03)
This calculation procedure suggests the definition of the helpful
auxiliary matrix:

Dfd—P fd—P—l fd—P—M +1 0
oy o
F ::Ef.d f‘f'l fd_.NH1 B , PandQON
O : O
Hfd+Q fd+Q—1 fd+Q—M+1 5P+Q+1)><(M)
(04)

And eg. 03 can be rewritten similarly to eq. 01:
Eld,i = F,Ta (05)
where 3 isthei-th possible sequenceof P +Q +1 symbols.

Each approximated conditional pdf can be obtained as the sum
of S gaussians (with elipsoidal bases) :

L= 3 ak)/ 3 at

where 7(x)= expE# (X-Ed,i)”g;;(x—Ed,i)H

and R, = E{x(n) - FTa(m)x(n) -F am)’ }

=0 (F'F-F"F)+0}l.
Finally, the output of the feed forward Suboptimum Bayesian
Equalizer (SBE) is given by:

a(n-d)=Decty S0

A schematic representation of the SBE is shown in Fig. 2.

Decision é(n}— d)
device

Figure 2. Schematic aspect of the SBE, where the
number of gaussiansis function of P and Q.
3.2 TheDecision Feedback Version

The decision feedback version of the SBE (DF-SBE) uses the
estimated symbols in order to improve the equalizer

performance. The formulation of this version is very similar to
that of the forward version, excepting the auxiliary matrix, now
redefined as:

A Dfd—P fd—P—l fd—P—M+l|:|
F==p:i 5 PandQON
E fd fd—l fd—M+1 aPﬂ)x(M)
(06)
and the clusters centers which are actualized at every time n by:
Clai(n)=F'3 +Fa(h-d-1) (07)

where F, and a(n-d —1)are given by:

f
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N-1 QM +N=-d-2)x(M)

a(h-d-1)=[a(n-d) an-mM-N+2)] .
Then, assuming that the estimated symbols are correct ones, the
cluster scatter matrix is now given by

R,.. = E{x(n) -Fra(n) - F/a(n-d -1)0
(x(n) ~F7&(n) - Fla(n-d - }
R =0/(F"F~(F.+F)"(F. +F) + o]l

A schematic representation of the DF-SBE is shown in Fig. 3.
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Figure 3. Schematic aspect of the DF-SBE, where the
number of gaussiansis function of P.

4. TRADE-OFF BETWEEN
COMPLEXITY AND PERFORMANCE

The approach proposed in this article provides, for each channel
impul se response, a family of equalizers with different levels of
complexity and performance. That is, adjusting the constants P
and Q (or only P for the DF-SBE), we can choose a suitable
number of cluster centers (egs. 05 and 07), thus adjusting the
device performance.

Thisis specialy useful when the channel impulse response (CIR)
is long and the Viterbi equalizer has a prohibitive complexity.
Evidently, smaller is the number of centers, worse is the
equalizer performance in terms of SER. But, fortunately, we can



analytically show [ ] that the ssimplest SBE and the Wiener
equaizer (and, equivaently, the smplest DF-SBE and the classic
DFE) provides the same SER.

One simple comparison of computational burden between the
Viterbi equalizer and our proposition is obtained by comparing
the number of states in the trellis of Viterbi and the number of
centers in our approach (both the number of states and the
number of centers play a similar and centra role on the
computational burden of each algorithm). In such a comparison,

the Viterbi equalizer is O(S") while the SBE is O(S*%*) and
the DF-SBE is O(SP“). It's worth noticing that the simplest DF-

SBE (P =0) corresponds to the classic DFE, which has already
a SER comparable to that of the Viterbi equalizer, in high SNR
[2]. Then, as the DF-SBE can outperform the DFE equalizer by
choosing P >0, this structure can provide a very low SER, if
we have a good channel estimation.

On the other hand, we have tested that the classical DFE

outperforms the forward SBE for intermediate valuefPofand
Q. Actually, the interest of the forward SBE is mostly a

theoretical one. Indeed, it provides a family of analytically
tractable approximations of the signal probability density

function (pdf) which has been useful along the subsequent work

on channel estimation.

5. SSIMULATION RESULTS

The simulations are split in two parts. In the first part, concerning

Figures 4 and 5, we compare some SBEs to the Wiener
equalizer. Equivalently, in the second part some DF-SBEs are

compared to the Viterbi equalizer and DFE (Fig. 6 ).
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Figure 4. Performance comparison for a fixed number of
taps (M =5), BPSK modulation,d =4 and channel

f=[-021 -050 072 036 0.21].

As a first illustration example, in Fig. 4 we show the SER

We can observe that the 2-clusters SBE and the Wiener equalizer
are equivalent, as analytically foreseen. Further, greater the
number of clusters, better the SBE performance.

The second example uses a 4-QAM modulation and the channel
is a complex one, having two in-band spectral near-nulls. In
terms of classification, a spectral null means that there is no
linear separation between states of different labels, regardless the
classification space dimensidvl. In such a situation, “linear”
equalizers, like the Wiener one and the 4-clusters SBE, are not
suitable. Actually, these two equalizers are considered in this
simulation in order to show their equivalent performance. Fig. 5
shows a typical result when we vary the number of equalizer
inputsM.

— Wiener uializerf
an
- 4-clustersSBE
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P,

SER
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Figure 5. Performance comparison for a fixed SNR=15
and modulation 4-QAM. The channel is complex and its
polynomial zeros are shown in subfigure.

Figure 6 shows the performances for a 3 coefficients complex
channel, with two in-band spectral nulls. As we can observe, the

DF-SBE of 0(42) provides a performance comparable to the
Viterbi equalizer oO( 3).
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performance of some SBEs. The FIR channel model is composed

of 5 real coefficients, and the modulation scheme is the BPSK (-
1,+1). Trials are carried out under different SNR levels (i.e.

10log((0? +02)/0?)).

Figure 6. Performance comparison for a fixed number of
equalizer inputsM =31, 4-QAM modulation,d = 25.

The channel is complex and its polynomial zeros are
shown in subfigure.



6. CONCLUSIONS

In this paper, a suboptimum family of equalizers has been
proposed based on the MAPSD. The development of such afamily
of equalizers was motivated by the possibility of controlling the
algorithm complexity.

The SBE structure is proposed in two versions. In the forward
version, the simplest equalizer of this family has a complexity
equivalent to that of the Wiener linear equalizer with equal
number of inputs and same decision delay. Equivalently, in the
forward/backward version, the simplest equalizer of this family
has a complexity and performance equivalent to that of the DFE
linear equalizer with equal number of inputs and same decision
delay. Some experimental results were shown as illustration of
such an equivalence.

We have aso shown that the equalizer complexity control is
carried out by the appropriated choice of two constants, namely, P
and Q (only P for the DF-SBE).

Actualy, as we can observe, the DF-SBE provides a SER lower
than the SBE. However, the SBE version is interesting because it
gives a parametric and analytically tractable approximation of the
received signal pdf. We have exploited this property in a
subsequent work on channel estimation. Our first results are quite
interesting.

(6]

[7]

(9]

[10] ForneYy, G. D,

Furthermore, it's worth noticing that each SBE is based on a
channel state clustering and the center of each cluster is easily
calculated by means of an auxiliary matrix (defined in eq. 05).

Then, two aspects must be considered: a) the channel estimation

and b) the construction of such an auxiliary matrix.

a) In fact, as we have already said, the channel estimation is the

subject of our subsequent work, which uses the same ideas as the

ones presented in this paper in order to provide a channel

estimation.

b) The construction of the auxiliary matrix, proposed in eqg.
04 and 06, subject to a fixed number of centers, is not
optimal. Indeed the optimal auxiliary matrix, for a fixed
number of rows, would be formed by digoints rows of the
convolution matrix. This procedure is equivalent to the
problem of adjusting the RBF complexity by variable
selection. Unfortunately, this point was not discussed in this
paper, but it will be taken into account in future works.
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