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ABSTRACT
A family of sub-optimal Bayesian equalizers is proposed in two
versions: feed-forward and decision feedback. We show that this
family of equalizers provides a range of  gradual choices
concerning the tradeoff between equalizer complexity and
symbol error rate (SER). We also point out the SER equivalence
between  the simplest proposed structure (the simplest equalizer
of the family) and Wiener linear  equalizer (or the decision
feedback equalizer for the decision feedback version). Some
simulations results are also presented.

1. INTRODUCTION

Intersymbol interference (ISI) is a typical problem in digital
communication systems. It occurs when the communication
channel has a considerable “memory”, which overlaps distinct
transmitted symbols. In such cases, special filters, called
equalizers, are used in order to reconstruct the transmitted
symbols by combating the ISI effect.

Linear equalizers have been used for long time. Their importance
is associated to their low complexity and theoretical tractability.
However, it has been shown [2] that the optimum equalizer is
nonlinear in all realistic cases where noise is present and the
channel is non-minimum phase. Indeed, considering the
equalization problem as a classification one, the optimum symbol
detector is the maximum a posteriori symbol-by-symbol detector
MAPSD, proposed by [9]. Considering the symbol error rate
(SER), the MAPSD is better than the popular Viterbi equalizer
[10], which is actually an efficient implementation of the
maximum likelihood sequence estimation (MLSE). However,
despite its desirable performance, the MAPSD is strongly limited
by its inherent structure complexity.

A  possible simplification of the MAPSD consists in segmenting
the full vector of observations in blocs and to proceed as if the
samples in these different blocs were mutually independent. In
some works (e.g. [3-5]), this simplification has been used in
order to implement nonlinear equalizers with Radial Basis
Function (RBF) structures. Indeed, in such approaches, the
channel states are points in a finite dimensional space and then,
clustering methods are applied over the channel outputs in order
to reduce the complexity of the RBF equalizers. Several different
methods have been proposed in order to find the cluster centers,
ranging from  k-means to Neural Network based algorithms[6].

Actually, in such approaches, finding the cluster centers
corresponds to an implicit channel estimation. Keeping this in

mind, we propose, in this work, a new method of reducing the
MAPSD (per blocks) equalizer complexity using an explicit
estimation of the channel parameters.

For that purpose, we perform a Bayesian classification using a
multi-gaussian approximation of the probability density function
of each class (one class for each element in the discrete alphabet
of modulation). The quality of the approximation depends on the
number of gaussians in the approximation.

The proposed structure is presented in two versions: feed-
forward sub-optimal Bayesian equalizer (SBE) and a decision
feedback sub-optimal Bayesian equalizer (DF-SBE).  The first
one is similar to a gaussian Radial Basis Function (RBF) network
where each RBF is thus centered at one of the previously
calculated centers and the whole input signal, structured as a
random vector, passes through a nonlinear transformation
corresponding  to the RBF network. Equivalently, the DF-SBE
uses the previously estimated symbols to outperform the SBE in
low noise environments. Then, its structure is similar to a
recurrent RBF.

This paper is organized as follows. In Section 2 we present the
system model. The forward and decision feedback versions of the
proposed family of equalizers are presented in Section 3. In
Section 4 we discuss the trade-off between complexity and
performance for such an approach. We present some illustrative
simulation results in Section 5, for BPSK and 4-QAM
modulation schemes. Finally, we summarize our major findings
and outline our future work in Section 6.

2. SYSTEM MODEL
In this work, we consider a particular communication scheme
where the digital data  are drawn with equal probability from a
finite alphabet { }Ssas ≤≤1: , forming an i.i.d. sequence )(na

of variance 2

aσ , and the noise, )(nb , is additive, white and

gaussian with zero mean and variance  2

bσ . The channel model is

a FIR filter, whose impulse response is of length N. Figure 1
shows a schematic representation of such a model:

Further, it is useful to define some column vectors:

• symbol data block:
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• channel impulse response: [ ]T

Nfff 110 −= Lf



+ 1−z 1−z 1−z

Channel

)(na

)(nb

)(nx )1( −nx )1( +−Mnx

)(nf
L

L

Figure 1. System Model.

• sampled noise block:

( ) ( ) ( ) ( )[ ]TMnbnbnbn 11 +−−= Lb

• sampled received signal:

( ) ( ) ( ) ( )[ ]TMnxnxnxn 11 +−−= Lx

We also define the convolution matrix:
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And now we can write: ( ) ( ) ( ) ( ) ( )nnnnn T baFbcx +=+= ,

where  ( )nc  is the channel state vector.

3. THE PROPOSED FAMILY OF
EQUALIZERS

3.1 The Feed Forward Version

Given a block of observations )(nx , the probabilistic symbol-

by-symbol algorithm (also called maximum a posteriori symbol-
by-symbol (MAPSD) or full Bayesian equalizer) choose the
symbol sa  which maximizes the conditional probability:

( ))(  )(Prmaxarg nadnas si
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Using the Bayes rule, the conditional probability density function
(pdf) associated to each symbol in the modulation alphabet, is
given by:
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channel state (or center) forming the set: { }11: −+≤≤ NM

i Sic  is a

conditional mean of  the received signal vector:
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where ia  is a possible sequence of 1−+ NM  symbols. The

superscript H denotes Hermitian transposition.

The full Bayesian equalizer may be summarized as:
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where ( ) ( ))(  )(Pr)(, nadnanf ssd xx =−= .

This equalizer is optimum in the sense of  minimizing the
probability of a symbol error [2]. However, its large
computational burden is the major shortcoming of this algorithm.

Before introducing the general formulation of the new equalizer,
it’s worth showing a particular case of our approach which links
the Wiener equalizer (nonparametric technique) and a kind of
suboptimum Bayesian equalizer (parametric technique).

In fact, if we split the  1−+NMS  centers in S  clusters, whose
centers are given by:
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we are able to approximate each conditional pdf by one gaussian
(with ellipsoidal basis)  :
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a σσ +−  is the within class dispersion matrix

[1] of  each cluster and [ ]11* +−−= Mddd fff Lf  is an

auxiliary vector.

Despite this rough pdf approximation, it’s possible to show [7]
that the equalizer:
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and the Wiener linear equalizer provide the same decision
boundary in the M-dimensional decision space. In others words,
they provide both the same SER.

In fact, we can generalize the idea of clustering centers with a

number of clusters ranging from S  to  1−+NMS . In order to do

that, we calculate the 1++QPS  cluster centers by the generalization
of the equation 02:
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This calculation procedure suggests the definition of the helpful
auxiliary matrix:
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And eq. 03 can be rewritten similarly to eq. 01:
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where 
ia~  is the i-th possible sequence of 1++ QP  symbols.

Each approximated conditional pdf  can be obtained as the sum

of  1++QPS gaussians  (with ellipsoidal bases)  :
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Finally, the output of the feed forward Suboptimum Bayesian
Equalizer (SBE) is given by:
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A schematic representation of the SBE is shown in Fig. 2.
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Figure 2. Schematic aspect of the SBE, where the
number of gaussians is function of P and Q.

3.2 The Decision Feedback Version

The decision feedback version of the SBE (DF-SBE) uses the
estimated symbols in order to improve the equalizer

performance. The formulation of this version is very similar to
that of the forward version, excepting the auxiliary matrix, now
redefined as:
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and the clusters centers which are actualized at every time n by:
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Then, assuming that the estimated symbols are correct ones,  the
cluster scatter matrix is now given by
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A schematic representation of the DF-SBE is shown in Fig. 3.
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Figure 3. Schematic aspect of the DF-SBE, where the
number of gaussians is function of P.

4. TRADE-OFF  BETWEEN
COMPLEXITY AND PERFORMANCE

The approach proposed in this article provides, for each channel
impulse response, a family of equalizers with different levels of
complexity and performance. That is, adjusting the constants P
and Q (or only P for the DF-SBE), we can choose a suitable
number of cluster centers (eqs. 05 and 07), thus adjusting the
device performance.
This is specially useful when the channel impulse response (CIR)
is long and the Viterbi equalizer has a prohibitive complexity.
Evidently, smaller is the number of centers, worse is the
equalizer performance in terms of SER. But, fortunately, we can



analytically show [ ] that the simplest SBE and the Wiener
equalizer (and, equivalently, the simplest DF-SBE and the classic
DFE) provides the same SER.

One simple comparison of computational burden between the
Viterbi  equalizer and our proposition is obtained by comparing
the number of  states in the trellis of Viterbi and the number of
centers in our approach (both the number of states and the
number of centers play a similar and central role on the
computational burden of each algorithm). In such a comparison,

the Viterbi equalizer is ( )NSO   while the SBE is ( )1++QPSO  and

the DF-SBE is ( )1+PSO . It’s worth noticing that the simplest DF-

SBE ( 0=P ) corresponds to the classic DFE, which has already
a SER comparable to that of the Viterbi equalizer, in high SNR
[2]. Then, as the DF-SBE can outperform the DFE equalizer by
choosing 0>P , this structure can provide a very low SER, if
we have a good channel estimation.

On the other hand, we have tested that the classical DFE
outperforms the forward  SBE for intermediate values of P  and
Q .  Actually, the interest of the forward SBE is mostly a

theoretical one. Indeed, it provides a family of analytically
tractable approximations of the signal probability density
function (pdf) which has been useful along the subsequent work
on channel estimation.

5. SIMULATION RESULTS

The simulations are split in two parts. In the first part, concerning
Figures 4 and  5, we compare some SBEs to the Wiener
equalizer. Equivalently, in the second part some DF-SBEs are
compared to the Viterbi equalizer and DFE (Fig. 6 ).
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As a first illustration example, in Fig. 4 we show the SER
performance of some SBEs. The FIR channel model is composed
of 5 real coefficients, and the modulation scheme is the BPSK (-
1,+1). Trials are carried out under different SNR levels (i.e.

))(log(10 222

bbx σσσ + ).

We can observe that the 2-clusters SBE and the Wiener equalizer
are equivalent, as analytically foreseen. Further, greater the
number of clusters, better the SBE performance.

The second example uses a 4-QAM modulation and the channel
is a complex one, having two in-band spectral near-nulls. In
terms of classification, a spectral null means that there is no
linear separation between states of different labels, regardless the
classification space dimension M. In such a situation, “linear”
equalizers, like the Wiener one and the 4-clusters SBE, are not
suitable. Actually, these two equalizers are considered in this
simulation in order to show their equivalent performance. Fig. 5
shows a typical result when we vary the number of equalizer
inputs M.
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Figure 5. Performance comparison for a fixed SNR=15
and  modulation 4-QAM. The channel is complex and its
polynomial zeros are shown in subfigure.

Figure 6 shows the performances for a 3 coefficients complex
channel, with two in-band spectral nulls. As we can observe, the

DF-SBE of ( )24O  provides a performance comparable to the

Viterbi equalizer of ( )34O .
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6. CONCLUSIONS
In this paper, a suboptimum family of equalizers has been
proposed based on the MAPSD. The development of such a family
of equalizers was motivated by the possibility of  controlling the
algorithm complexity.
The SBE structure is proposed in two versions. In the forward
version, the simplest equalizer of this family has a complexity
equivalent to that of the Wiener linear equalizer with equal
number of inputs and same decision delay. Equivalently, in the
forward/backward version, the simplest equalizer of this family
has a complexity and performance equivalent to that of the DFE
linear equalizer with equal number of inputs and same decision
delay. Some experimental results were shown as illustration of
such an equivalence.

We have also shown that the equalizer complexity control is
carried out by the appropriated choice of two constants, namely, P
and Q (only P  for the DF-SBE).

Actually, as we can observe, the DF-SBE provides a SER lower
than the SBE. However, the SBE version is interesting because it
gives a parametric and analytically  tractable approximation of the
received signal pdf. We have exploited this property in a
subsequent work on channel estimation. Our first results are quite
interesting.

Furthermore, it’s worth noticing that each  SBE is based on a
channel state clustering and the center of each cluster is easily
calculated by means of an auxiliary matrix (defined in eq. 05).
Then, two aspects must be considered: a) the channel estimation
and b) the construction of such an auxiliary matrix.
a) In fact, as we have already said, the channel estimation is the
subject of our subsequent work, which uses the same ideas as the
ones presented in this paper in order to provide a channel
estimation.
b) The construction of the auxiliary matrix, proposed in eq.
04 and 06, subject to a fixed number of centers, is not
optimal. Indeed the optimal auxiliary matrix, for a fixed
number of rows, would be formed by disjoints rows of  the
convolution matrix. This procedure is equivalent to the
problem of adjusting the RBF complexity by variable
selection. Unfortunately, this point was not discussed in this
paper, but it will be taken into account in future works.
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