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ABSTRACT
Recent work on fractionally spaced blind equalizers have shown
that it is possible to exactly identify the channel and its input se-
quence from thenoise–freechannel outputs [1–3]. However, the
obtained results are based on a set of over–restrictive constraints
on the channel. We have shown that the exact identification can be
achieved in a much broader class of channels [4]. In this paper, we
present performance results of the exact channel estimator in the
presence of noise.

1. INTRODUCTION

Since the invention of digital communication, blind channel equal-
ization has been an active area of research. Some of the pro-
posed approaches have provided significant improvements in the
removal of inter–symbol–interference (ISI). For a review of the
past and present research on the blind channel equalization please
refer to [5–7]. Although the recent research on this subject pro-
vides significant contributions, most of the proposed solutions are
applicable only for a limited class of communication channels and
input sequences even in the noise–free case [1–3, 8–11]. This ob-
servation prompted us to investigate the noise–free blind channel
identification and input sequence estimation problem to fully char-
acterize what can be done with the least set of assumptions on the
channel model [4]. In our work, we have presented theoretical re-
sults on the exact identification of the channel response and input
sequence based on the noise–free observation of the channel out-
put sequence. In this paper, we extend the exact blind channel es-
timator proposed in [4] to the more realistic case of noisy channels
and we investigate its performance with computer simulations.

Over–sampling the output of an FIR continuous–time channel
at a rateM 0 times faster than the symbol rate1=T provides chan-
nel diversity which can be equivalently represented as a single–
inputM 0–output discrete–time multi–channel FIR filter [6]. With-
out loss of generality, assuming that firstM � M 0 of these
sub–channels are to be identified, the corresponding multi–channel
model is shown in Fig. 1 where the outputs of the multi–channel
filter are the samples of the received signaly(t):

yi[n] = y(nT + (i� 1)
T

M 0
) ; 1 � i �M : (1)

In this modelfa[n]g1n=0 is the input symbol sequence chosen from
a finite alphabet,D represents the transmission delay andvi[n] is

the additive channel noise. The FIR filterhc[n] in Fig. 1 cor-
responds to the common zeros of the sub–channels. If the sub–
channels shareL1 common zeros, then the length ofhc[n] is
L1 + 1. If the sub–channels do not share any common zeros
thenhc[n] = �[n]. In this work we investigate the estimation
of the uncommon parts of the channelsh1[n]; : : : ; hM [n] based
on the noisy channel output. We also discuss the estimation of
the common inputxc[n] once the uncommon parts of the channels
are identified. The estimation of the common part of the chan-
nelshc[n] and the input sequencea[n] will not be discussed here.
These problems require further investigation.

The organization of the paper is as follows. In Section 2 we
review the blind channel estimator proposed in [4] and summarize
its key features for the noise–free problem. Then we discuss the
extensions of these results to the noisy channels. After giving a
simulation example in Section 3, we derive some conclusions in
Section 4.

2. CONSTRAINED IDENTIFICATION OF CHANNELS
h1[n]; : : : ; hm[n]

For1 � i �M , letgi[n] be an estimate ofhi[n]. Here we assume
that the estimated order̂L2 of the channel estimates is larger than
or equal toL2 which is the largest order of the channelshi[n]. We
will base the optimality of the channel estimates at timeN to the
following cost function:

JL̂2(g;N) =
1

M

MX
i=1

MX
j=i+1

Jij(gi; gj ;N) ; (2)

whereJij(gi; gj ;N), the cost function associated with channelsi
andj, is defined as:

Jij(gi; gj ;N) =
1

Cw;N

NX
k=0

wN�k

���gTi yj [k]� g
T
j yi[k]

���2 ;

(3)

wheregi andyi[k] are defined as:

gi =
�
gi[0] gi[1] � � � gi[L̂2]

�T
(4)

yi[k] =
�
yi[k] yi[k � 1] � � � yi[k � L̂2]

�T
: (5)



Cw;N in (3) is a normalization constant defined asCw;N =PN

k=0 wN�k andwk is a weighting sequence that satisfies

0 � wk � 1 ; 0 � k � N : (6)

By using (4) a more compact representation for the costJL̂2 (g;N)
can be given as:

JL̂2(g;N) = g
H
Ryy[N ] g ; (7)

whereg = [gT1 gT2 � � � gTM ]T is the concatenated channel vec-
tor estimates andRyy[N ] is the hermitian nonnegative definite
matrix with ith diagonal entry

P
j 6=iRyjyj

[N ] and (i; j)th off–
diagonal entry�Ryjyi

[N ], whereRyjyi
[N ] is the weighted

cross–correlation matrix of the multi–channel filter outputsyj and
yi:

Ryjyi
[N ] =

1

Cw;N

NX
k=0

wN�ky
�
j [k]y

T
i [k] : (8)

In the noise–free case, the minimizers of the cost function
given by (7) are fully characterized by the following theorems
whose proofs are given in [4,12].

Theorem 1.

JL̂2(g ;N) = 0 , gi[n] = hi[n] � f [n] (9)

provided that

1) L̂2 � L2 (10)

2) N � D + L2 + L̂2 (11)

wheref [n] is an arbitrary FIR filter of order at most̂L2 � L2.

Theorem 2. The set of vectors[ gT1 gT2 � � � gTM ]T that

satisfies(9) constitutes an̂Lc+1 dimensional vector space, where
L̂c = L̂2 � L2.

An important implication of the second theorem is stated as:

Corollary 1. The matrixRyy[N ] has anL̂c+1 dimensional null-
space.

These theoretical results establish a basis for the exact blind
channel estimator in the noise–free case: By starting withL̂2

which is larger thanL2, Ryy[N ] is obtained. Then by using
Corollary 1, the true channel order is identified as

L2 = L̂2 � � + 1 ; (12)

where� is the dimension of the null–space ofRyy[N ]. Once the
actual orderL2 is obtained, the minimization of (7) is solved with
L̂2 = L2. SinceL̂c = L̂2 � L2 = 0, Theorem 1 states that any
minimizer ofJL2 (g;N) would be in the form

gi[n] = f [0]hi[n] ; for i = 1; : : : ;M (13)

wheref [0] is an arbitrary constant. To avoid the undesired triv-
ial solution f [0] = 0, we have to introduce some constraints
into the minimization problem. The constraints should be im-
posed in a way that a non–zero multiple of the actual channels
h1[n]; : : : ; hM [n] should be in the feasible set. As it can be shown
easily, the following set of constraints meets this requirement [12]:

(i) jjgjj2 = �2

(ii) jjgijj
2 = �2i for somei

(iii) CHg = � for some known matrixC.

First two of them places energy constraints on the the sub–
channels and the last one linearly constraints the true channel co-
efficients which can be of use in certain applications such as the
training phase of a Binary Phase Shift Keying (BPSK) communi-
cation system.

Several complications arise, while we are extending the above
algorithm to the more realist case of additive noise channels. For
instance, in the noisy case the true channel order is not given by
L2 = L̂2 � � + 1, where� is the dimension of the null space of
Ryy[N ]. However, if the channel noise is additive and white we
can still make use of the same equation provided that we redefine
� as the multiplicity of the smallest singular value ofRyy[N ]. Be-
cause in this case the smallest� singular values ofRyy[N ] will
be clustered together especially at high signal to noise ratios and/or
largeN . Another point is that, in [12] it has been shown that all of
the above constraints are equivalent in the noise–free case in the
sense that any of them can be used to obtain a non–zero multiple
of the true channel. However, in the presence of noise, Theorem
1 does not hold and the minimization of (7) under different con-
straints in general produces different channel estimates. In the fol-
lowing, closed form solutions corresponding to these constraints
are provided. As we show in the simulation section, the quality of
the obtained estimates may vary considerably in the noisy case.

2.1. Energy Constraint 1

Let the eigen decomposition ofRyy be given as1:

Ryy =

M(L2+1)X
i=1

�iqiq
H
i ; �1 � � � � � �M(L2+1) � 0;

jjqijj
2 = 1 for 1 � i �M(L2 + 1) : (14)

It is well known that the minimizer of (7) under the total energy
constraint is the eigenvector ofRyy corresponding to the smallest
eigenvalue�M(L2+1):

ĝ = � qM(L2+1)
: (15)

For computational efficiency, it is better to compute the smallest
eigenvalue and the corresponding eigenvector in (15) by using an
algorithm specially designed for that purpose [13], rather than car-
rying out a full eigen decomposition as in (14).

2.2. Energy Constraint 2

Without loss of generality we will assume that the energy con-
straint is imposed only on to the first channel. Then the constrained
optimization problem can be restated as

min
g

g
H
Ryyg (16)

s.t. jjg1jj
2 = �21 : (17)

1For notational convenience, the dependence onN is suppressed.



If we partition the matrixRyy and the vectorg as follows:

Ryy =

�
R11 R12

R21 R22

�
(18)

g =
�
gT1 sT

�T
(19)

whereR11 is the upper leftL2 + 1 byL2 + 1 block of the corre-
lation matrixRyy, we can use the following procedure to obtain
the optimal solution:

1. Find the smallest eigenvalue and the corresponding eigen-
vector of the Schur complement

�
R11 �R12R

�1
22 R21

�
qs = �sqs : (20)

2. Computêg1 andŝ as
�
ĝ1 ŝ

�
= �1

�
I �R�1

22 R21

�
qs ; (21)

whereI is theL2 + 1 dimensional identity matrix.

Since the dimension of the eigenvalue problem in (20) isM times
smaller than that of in Section 2.1, computationally it is easier to
obtain the solution under the second constraint than the first con-
straint.

2.3. Projection Matrix Constraint

The last constraint in Section 2 is a projection matrix constraint,
which constrains the component of the channel vectorg in the
range–space of a known matrixC. The solution of (7) under this
constraint is given as

ĝ = �(R�1
yyC)(CH

R
�1
yyC)�1 : (22)

If the constraint matrix is chosen as a vectorC � c, this expres-
sion simplifies to

ĝ = �
R�1
yyc

cHR�1
yyc

: (23)

In the next section we conduct computer simulations to inves-
tigate the performance of these channel estimates obtained under
different constraints.

3. SIMULATIONS

Consider the 4–channel FIR (M = M 0 = 4) filter with pole–zero
locations shown in Fig. 2. In the simulation, samples of the input
symbol sequencea[n] with variance�2a = 2 are drawn from a
QAM alphabet and the channel noise sequencesvi[n] are chosen
as the realizations of a white and Gaussian noise sequence with
variance�2v. In Fig. 3, 251 samples of the noisy channel outputs
at a signal to noise ratio of 15 dB are shown, where the signal to
noise ratio is defined as

SNR = 10 log10
�2a
P4

i=1 jjhijj
2

�2v
: (24)

In Fig. 4, the singular values of the correlation matrixRyy[250]

are plotted when the channel order estimate isL̂2 = 5. From this
figure we estimate the number of noise singular values as� = 3

and identify the true channel order asL2 = L̂2 � � + 1 = 3.
After recomputing the correlation matrixRyy[250] for L̂2 = 3,

we obtained estimates of the true channel under the constraints in
Section 2. When obtaining the solution under the projection ma-
trix constraint,C is chosen as a unit vector with a 1 at its first
entry. Once an estimate for the true channel is obtained, several of
the existing algorithms in the literature can be used to estimate the
input sequence (for instance see [14]). In this simulation, we use
the linear minimum mean square estimator [15] which is computa-
tionally intensive, but produces accurate results. The input symbol
constellations estimated by this way are shown in Fig. 5. By com-
paring the obtained results, we conclude that the performance of
the energy constraints are comparable whereas the performance of
the projection matrix constraint is poorer.

4. CONCLUSIONS

An extension of the exact blind channel estimator [4] is given to
the additive noise channels. The identification of the uncommon
parts of the channels is posed as a constrained minimization prob-
lem and closed form solutions to this problem are obtained under
different constraints. The quality of these estimates is investigated
by using computer simulations. In the future, we plan to study the
extension of the pruning algorithm in [4] to the noisy channels,
which will be used for the identification of the common parts of
the channels.
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Figure 1: The multi–channel filter model.
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Figure 2: The pole–zero locations of the channels.
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Figure 3: The scatter plot of the channel outputs.
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Figure 4: The singular values of the correlation matrixRyy[250].
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Figure 5: The scatter plot of the input sequence estimates for dif-
ferent constraint channel estimators: energy constraint 1 (a), en-
ergy constraint 2 (b) and projection matrix constraint (c).


