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ABSTRACT the additive channel noise. The FIR filteg[n] in Fig. 1 cor-

Recent work on fractionally spaced blind equalizers have shown résponds to the common zeros of the sub—channels. If the sub—
that it is possible to exactly identify the channel and its input se- channels shard.; common zeros, then the length bf[n] is
quence from thaoise—freechannel outputs [1-3]. However, the L1 + 1. If the sub—char_lnels do not Shar_e any common zeros
obtained results are based on a set of over—restrictive constraint§h€n hc[n] = d[n]. In this work we investigate the estimation

on the channel. We have shown that the exact identification can beof the uncommon parts of the channélgn], .. ., har[n] based
achieved in a much broader class of channels [4]. In this paper, weOn the noisy channel output. We also discuss the estimation of

present performance results of the exact channel estimator in théh€ common input.[n] once the uncommon parts of the channels
presence of noise. are identified. The estimation of the common part of the chan-

nelsh.[n] and the input sequenegn] will not be discussed here.
These problems require further investigation.
The organization of the paper is as follows. In Section 2 we
Since the invention of digital communication, blind channel equal- review the blind channel e_stlmator proposed in [4] and summarize
its key features for the noise—free problem. Then we discuss the

ization has been an active area of research. Some of the pro tensi f th Its 10 th X h s, After qivi
posed approaches have provided significant improvements in the"XIENsions ot these results 1o the noisy channels. er giving a

removal of inter—symbol—interference (ISI). For a review of the simu_lation example in Section 3, we derive some conclusions in

past and present research on the blind channel equalization pleasgeCtlon 4.

refer to [5—7]. Although the recent research on this subject pro-

vides significant contributions, most of the proposed solutions are 2. CONSTRAINED IDENTIFICATION OF CHANNELS

applicable only for a limited class of communication channels and hi[n], ..., hm[n]

input sequences even in the noise—free case [1-3,8-11]. This ob-

servation prompted us to investigate the noise—free blind channelFor1 < i < M, letg;[n] be an estimate df; [n]. Here we assume

identification and input sequence estimation problem to fully char- that the estimated orddr, of the channel estimates is larger than

acterize what can be done with the least set of assumptions on theyr equal toL» which is the largest order of the channkién]. We

channel model [4]. In our work, we have presented theoretical re- will base the optimality of the channel estimates at ti¥i¢o the

sults on the exact identification of the channel response and inputfollowing cost function:

sequence based on the noise—free observation of the channel out-

put sequence. In this paper, we extend the exact blind channel es- 1 M

timator proposed in [4] to the more realistic case of noisy channels Ity (g;N) = N Z

and we investigate its performance with computer simulations. i=1j
Over—sampling the output of an FIR continuous—time channel

at a rateM’ times faster than the symbol rat¢T provides chan-

nel diversity which can be equivalently represented as a single—

input M’ —output discrete—time multi—-channel FIR filter [6]. With-

1. INTRODUCTION
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whereJ;;(g;,g;; V), the cost function associated with channiels
andy, is defined as:

N -
out loss of generality, assuming that filkf < M’ of these Tia..a.: N) = 1 P P X IR g ?
sub—channels are to be identified, the corresponding multi—-channel ~* (9595 N) Cu.n kzzo ~-r|9: Y,k <9 vkl
model is shown in Fig. 1 where the outputs of the multi-channel 3)

filter are the samples of the received sign@):
. T whereg,; andy;[k] are defined as:
yilnl =yl + (D))

~ T

= ; i1 L 4
In this modeKa[n]}5Z, is the input symbol sequence chosen from 9i Lo:0] il i[L2] ] R “)
a finite alphabetD represents the transmission delay afa] is yilk] = [wilk] wilkel - wylkel]] . ()

1<i<M . ()



Cuw,~ in (3) is a normalization constant defined &5,y =
Zszo wy— andwy, is a weighting sequence that satisfies

0<wy <1 , O0<k<N. (6)

By using (4) a more compact representation for the d@zs(g; N)
can be given as:

Jﬁ2(Q;N) = gHRyy[N] g, (7)

whereg = [gT g ... gT,]7 is the concatenated channel vec-
tor estimates and®?,,[N] is the hermitian nonnegative definite
matrix with i diagonal entryy" ., Ry, [N] and (i, )" off-
diagonal entryeRy .y, [N], where Ry 4, [N] is the weighted
cross—correlation matrix of the multi-channel filter outpytsand
Y-

1
Cw,N

N
Ry;y,[N] = Y wn—iy; [kly! (K] - ®)
k=0

In the noise—free case, the minimizers of the cost function
given by (7) are fully characterized by the following theorems
whose proofs are given in [4,12].

Theorem 1.

Ji,(g;N) = 0 gi[n] = hi[n] * f[n] )
provided that
Ly > Ly
N>D+ Lo+ Lo

1)
2)

(10)
(€]
wheref[n] is an arbitrary FIR filter of order at mosk.» < Lo.

Theorem 2. The set of vector§ g7 g7 g% ¥ that

satisfieg9) constitutes arl. + 1 dimensional vector space, where
LC = L2 <:>L2.

An important implication of the second theorem is stated as:

Corollary 1. The matrixR,.,[N] has anL.+ 1 dimensional null-
space.

These theoretical results establish a basis for the exact blind

channel estimator in the noise—free case: By starting \ith
which is larger thanLs, Ry[N] is obtained. Then by using
Corollary 1, the true channel order is identified as

Lzzig <:>1’]+1 s (12)

wheren, is the dimension of the null-space Bf,,[/N]. Once the
actual ordetL., is obtained, the minimization of (7) is solved with
L, = L». SinceL. = L, & Lo = 0, Theorem 1 states that any
minimizer of Jz,, (g; N') would be in the form

fl0]hi[n]

where f[0] is an arbitrary constant. To avoid the undesired triv-
ial solution f[0] 0, we have to introduce some constraints
into the minimization problem. The constraints should be im-

fori=1,... , M (13)

gi[n]

posed in a way that a non-zero multiple of the actual channels

hi[n],... , ha[n] should be in the feasible set. As it can be shown
easily, the following set of constraints meets this requirement [12]:

0 lgll* =p?
(i) ||g;||* = p? for somei
(i) cfg = afor some known matriC.

First two of them places energy constraints on the the sub—
channels and the last one linearly constraints the true channel co-
efficients which can be of use in certain applications such as the
training phase of a Binary Phase Shift Keying (BPSK) communi-
cation system.

Several complications arise, while we are extending the above
algorithm to the more realist case of additive noise channels. For
instance, in the noisy case the true channel order is not given by
L» = Ls <1 + 1, wherey is the dimension of the null space of
R,y [N]. However, if the channel noise is additive and white we
can still make use of the same equation provided that we redefine
n as the multiplicity of the smallest singular valueR{,, [N]. Be-
cause in this case the smallessingular values oR,,[N] will
be clustered together especially at high signal to noise ratios and/or
large N. Another point is that, in [12] it has been shown that all of
the above constraints are equivalent in the noise—free case in the
sense that any of them can be used to obtain a non-zero multiple
of the true channel. However, in the presence of noise, Theorem
1 does not hold and the minimization of (7) under different con-
straints in general produces different channel estimates. In the fol-
lowing, closed form solutions corresponding to these constraints
are provided. As we show in the simulation section, the quality of
the obtained estimates may vary considerably in the noisy case.

2.1. Energy Constraint 1
Let the eigen decomposition @t,,., be given ak

M(L2+1)

R,y Z /\iquf{, AL 2 2 Ay 41y 2 0,
i=1

llg:|I> =1for1 <i < M(Ly+1) . (14)
It is well known that the minimizer of (7) under the total energy
constraint is the eigenvector &,,,, corresponding to the smallest
eigenvalue\ (., +1):

g = KAnr(ny+1) - (15)
For computational efficiency, it is better to compute the smallest
eigenvalue and the corresponding eigenvector in (15) by using an
algorithm specially designed for that purpose [13], rather than car-
rying out a full eigen decomposition as in (14).

2.2. Energy Constraint 2

Without loss of generality we will assume that the energy con-
straint is imposed only on to the first channel. Then the constrained
optimization problem can be restated as

min gHRyyg (16)
g

st lg,lI” =nt . 17)

1For notational convenience, the dependencéVas suppressed.



we obtained estimates of the true channel under the constraints in
Section 2. When obtaining the solution under the projection ma-
trix constraint,C is chosen as a unit vector with a 1 at its first
entry. Once an estimate for the true channel is obtained, several of
[ g7 the existing algorithms in the literature can be used to estimate the
! input sequence (for instance see [14]). In this simulation, we use

lation matrix R,,,,, we can use the following procedure to obtain tionally intensive, but produces accurate results. The input symbol
the optimal solution: constellations estimated by this way are shown in Fig. 5. By com-

paring the obtained results, we conclude that the performance of
the energy constraints are comparable whereas the performance of
the projection matrix constraint is poorer.

If we partition the matrixR,, and the vectog as follows:
Ry

R

R
R»»

T]T

(18)

(19)

Ryy

g = s

1. Find the smallest eigenvalue and the corresponding eigen-
vector of the Schur complement

(Ru1 <=>R12R521R21) g, = Aq, . (20)
4. CONCLUSIONS
2. Computej, ands as
An extension of the exact blind channel estimator [4] is given to
[0, 8]=m[I &R, Ralaq, , (21) the additive noise channels. The identification of the uncommon

parts of the channels is posed as a constrained minimization prob-

lem and closed form solutions to this problem are obtained under

Since the dimension of the eigenvalue problem in (20)/isimes different constraints. The quality of these estimates is investigated

smaller than that of in Section 2.1, computationally it is easier to by using computer simulations. In the future, we plan to study the

obtain the solution under the second constraint than the first con-extension of the pruning algorithm in [4] to the noisy channels,

straint. which will be used for the identification of the common parts of
the channels.

wherel is theL, + 1 dimensional identity matrix.

2.3. Projection Matrix Constraint
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a yyC
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yyC
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In the next section we conduct computer simulations to inves-
tigate the performance of these channel estimates obtained unde
different constraints.

3. SIMULATIONS

Consider the 4—channel FIR{ = M' = 4) filter with pole—zero
locations shown in Fig. 2. In the simulation, samples of the input
symbol sequence[n] with variances? = 2 are drawn from a
QAM alphabet and the channel noise sequengps are chosen

as the realizations of a white and Gaussian noise sequence with

varianceo?. In Fig. 3, 251 samples of the noisy channel outputs
at a signal to noise ratio of 15 dB are shown, where the signal to
noise ratio is defined as

o 3 i lIhall?

o3

SNR = 10log;, (24)
In Fig. 4, the singular values of the correlation matfd,,[250]
are plotted when the channel order estimatBjs= 5. From this
figure we estimate the number of noise singular values as3
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Figure 1: The multi-channel filter model.
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Figure 2: The pole—zero locations of the channels.
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Figure 3: The scatter plot of the channel outputs.
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Figure 5: The scatter plot of the input sequence estimates for dif-
ferent constraint channel estimators: energy constraint 1 (a), en-
ergy constraint 2 (b) and projection matrix constraint (c).



