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ABSTRACT
State of the art of time-frequency signal representation methods
and their use for signal and image processing are reviewed and
the ways of their further development are discussed and
illustrated by examples.

1. INTRODUCTION

Time-frequency domain signal representation has been known
since 40-th as a powerful method for nonstationary signal
analysis and processing ([1]). However, until recently its
application was limited due to the lack of adequate computer
power. Modern progress of digital computer and signal
processing technology has opened new perspectives in signal
processing in time-frequency domain. Recently proposed
transform image coding methods, local adaptive linear filters
([2-9]) and nonlinear wavelet methods ([10-13]) represent a
first advance in this direction.

Transform image coding methods are maybe the earliest
example of application of time-frequency signal representation.
In transform coding, image is divided into blocks whose
transform representation is shrunk and quantized.  This process
can be regarded as sampling the time-transform representation
of the signal followed by shrinkage and quantization.

The local adaptive filters work in a moving window in a
domain of an orthogonal transform and, in each position of the
window, nonlinearly modify the transform coefficients of the
signal representation in order to obtain an estimate of the
central sample of the window. In the simplest implementation
for signal de-noising, the transform coefficients are compared
with a threshold and those that do not exceed the threshold are
discarded as noise.

In signal denoising by nonlinear subband (wavelet, lapped
transform) methods such as wavelet shrinkage the signal is
successively split into halves that are then expanded in
orthogonal bases such as local trigonometric bases or wavelet
packets, and, at each scale, transform coefficients are compared
with a certain threshold. Those that do not exceed the threshold
are discarded from signal reconstruction. Signal denoising by

wavelet shrinkage have gained a considerable popularity in
signal processing community.

None of these methods, however, uses the full potential of
time(space)-frequency signal representation. In time (space)-
frequency domain, they apply only point-wise operations such
as, for instance, point-wise weighting, shrinkage or zonal
quantization, with (practically) no regard to the transform
representation for adjacent samples.

Time (space)– frequency signal (image) representation is a
special case of what one can call time (space) – transform
domain representation. In what follows, we’ll be using the term
“time-frequency representation” in this more general sense.

2. REDUNDANCY OF TIME-
FREQUENCY DOMAIN SIGNAL

REPRESENTATIONS

The existence of redundancy in time-frequency signal
representation is associated with the fact that time-frequency
signal representation contains SzW times more data then the
signal, where SzW is size of the moving window used to
generate the representation. Mathematically, one can treat this
representation as a frame [20]. This redundancy exhibits itself
in thee appearance of highly correlated and, to a certain degree,
regular patterns in time-transform domain (Fig. 1). The
regularities in time-frequency signal representation depend both
on the type of the transform and on the correlations
characteristic of particular signals. For instance, local DFT
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One can see from these formulas that sort of an auto-regressive
model holds for local DFT signal spectra. Similar, though



sometimes more involved recursive relationships can be
derived for other transforms.

Due to the regularity, the patterns that signals form in their
time-frequency domain representation are much easier to
discriminate if they are treated as 2-D (4-D for space-transform
domain) ones rather then point-wise as it is done now in above
mentioned time-frequency domain signal processing methods.
This may represent a substantial potential for improving time-
frequency domain signal processing.

Fig. 1 Examples of ECG and speech signals and patterns they
form in their time-frequency representations

At present, quite a number of image processing methods, linear
and nonlinear, are known that are capable of efficient detection
and restoration of patterns in noise clutter. The design and use
of these methods for signal processing in time(space)-transform
domain is simplified by the availability of formal models that
describe signal correlations in time (space)- transform domain.

3. APPPLICATIONS OF TIME-
FREQUENCY PROCEESSING

Important applications of time-frequency signal processing are:

1. Signal denoising, restoration and separation

2. Signal (image) coding

3. Signal interpolation

4. Signal recognition

5. Signal detection and target location

6. Signal and image watermarking and generating signals
with a specified time-frequency pattern

In signal denoising and time-frequency separation, signal
representation is segmented into different areas representing
signal and noise or different signals. In signal restoration, signal
time-frequency representation is modified to compensate
degradations in system (signal and image blur, signal
interruptions, etc.). In this process, correlations of patterns in
time-frequency representation can be actively exploited to
improve reliability of signal and noise separation.

In signal (image) transform coding methods, time-frequency
domain shrinkage, quantization and signal restoration
efficiency can be improved by making use of entire time-
frequency domain rather then only of its samples. Recently
proposed  zero-tree wavelet coding method ([14]) represents an
advance in this direction.

In signal interpolation for restoration of intermediate or lost
signal samples, interpolation (linear or nonlinear) of interrupted
patterns in signal time-frequency representation may improve
signal interpolation quality.

In signal recognition, time-frequency signal representation is
compared as a whole with corresponding template
representations in order to improve discrimination capability of
recognition of signals or their individual fragments.

In signal detection and target location, time-frequency
representation processing is used to allow for signal (image)
inhomogeneity and in this way to improve the detection
discrimination capability ([9]).

In signal watermarking, a special marking pattern is introduced
into the signal time-frequency representation to allow
identificvation of the origin of the signal, and time-frequency
representation redundancy can be used to improve detectability
of water marks and more efficiently hide watermarks in the
signal.

4. EXPERIMENTAL RESULTS

In what follows we demonstrate results of experiments to
illustrate time-transform domain signal processing. One set of
experiments demonstrates excavation of a signal buried in a
very strong interference. The experiments were performed with
a test ECG signal hidden in the mixture with a very strong
frequency modulated interference. Separation of signal and
interference was carried out in two steps. On the first step,
squared module of the space-frequency representation of the
mixture was smoothed by a box filter with the aperture
appropriately adjusted to simplify subsequent detection of the
interference component by thresholding. At the second pass,
the interference signal separated on the first step was subtracted
from the mixture, and the result was subjected to similar
filtering with time-frequency domain smoothing window
adjusted to suppress residuals of the interference left after its



removal after the first pass. Fig.2 shows a test ECG signal.
Fig.3 shows the mixture of the test signal and the interference.
Fig.4 illustrates subsequent steps of processing time-frequency
signal representation aimed at separating the interference from
the mixture. Fig.5 demonstrates the separated interference after
the first pass of the processing.  The result of removal the
interference from the mixture is shown in Fig.6. One can see
that it contains some interference left after the separation This
residual interference is filtered out at the second pass (Fig.7).
The restored resulting signal is shown in Fig.8. One can see
from these illustrations that appropriate time-frequency domain
processing may allow signal restoration and its separation from
interferences even when interferences are substantially stronger
then the signal. Simple detection by time-frequency domain
thresholding is not capable of such an efficient restoration.
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Fig. 2 A test signal

Fig. 3 Test signal camouflaged by a strong interference

Fig. 4 From top to bottom: Magnitude of time-frequency (DCT
domain shown in coordinates time versus spectrum
magnitudes; window size is 129) representation of the mixure
of signal and interference  shown in Fig. 2; the same after
smoothing by a box filter in the window 5 spectral components

by 55 time components. Smoothing was aimed at time-
frequency representation preparation for subsequent detection
of the interference component by thresholding; time-frequency
representation of the detected interference component.

Fig. 5 Interference signal separated from the mixture

of Fig. 3

Fig. 6 Signal separated from the interference after the first
pass.

Fig. 7 Illustration of the second pass of processing of time-
frequency domain of the separated signal of Fig. 5. From top to
bottom: Magnitude of time-frequency (DCT domain shown in
coordinates time versus spectrum magnitudes; window size is
35 samples) representation of the separated signal; the same
after smoothing by a box filter in the window 13 spectral
components by 3 time components. As in the first pass (Fig. 3),
smoothing was aimed at time-frequency representation
preparation for subsequent detection of the signal component
by thresholding; time-frequency representation of the detected
signal component.
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Fig. 8 Restored signal

The second set of experiments have been carried out to apply
space-frequency filtering of images ([18,19]) as a post-
processing stage to decompressed images that contain artifacts
caused by compression.

Image compression algorithms used today are based mainly on
block transform coding or subband decomposition ([14,15,16]).
Discrete cosine transform (DCT) is the most commonly used
transform that has many benefits. The main drawback of the
DCT block coding are blocking artifacts ([17]). The borders
between adjacent blocks become visible when the compression
ratio is high. This visually disturbing phenomena is caused by
the short non-overlapping basis functions of the DCT, hence
the block borders become discontinuous after the quantization.

Subband and wavelet coding do not suffer from this kind of
blocking artifacts since they do not operate on small discrete
blocks. However, they may produce other artifacts. In the case
of heavy quantization the long filters tend to cause visible
ringing effects on high frequencies. Although this is not as
visible as blocking, it can be disturbing if the amplitude of
these oscillations is high enough. In Figures 9 and 10 are shown
the piecewise constant image “Piecewise” and the
corresponding decompressed image being compressed using
“SPIHT” wavelet-based coder ([15]) with compression ratio
CR=16, resulting in PSNR=29.5 dB.

Decompressed image in Fig. 10 has strong distortion (pseudo-
Gibbs ripples near boundaries). In order to reduce this
distortion one can use an adaptive denoising strategy based on a
combination of wavelet and local denoising ([19]), which
results in the following image shown in Figure 11. The method
exploits local neighborhood correlations in local spatial-
frequency domain by applying local transform-based (LTB)
denoising ([18]) in order to update wavelet coefficients. Here,
LTB filtered image is used as a “reference” image in an
iterative adaptation scheme working in wavelet domain.
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Fig. 9  Original “Piecewise” image

Fig. 10 Decompressed image “Piecewise”

 (CR=1:16, PSNR=29.5)

Fig. 11 Enhanced decompressed image “Piecewise”
(CR=1:16, PSNR=33.3)
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