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ABSTRACT

We consider the case of strongly non-Gaussian
noise contamination. To handle this situation, we
propose a combination of statistically optimized
stack filters and transform based denoising. The
purpose of using the stack filters is to reduce the
noise level, remove outliers, while retaining im-
portant signal detail. The remaining noise at the
output of this stage is closer to a Gaussian one.
Consequently, transform based techniques become
more effective in denoising. Numerical simula-
tions confirming the effectiveness of the proposed
method are presented.

1. INTRODUCTION

Multiresolution transforms, unlike traditional Fourier

methods, are well suited for situations in which
signals possess nonstationary behavior. Wavelet
based techniques have been successfully applied
in signal and image denoising applications, espe-
cially when the signal is embedded in Gaussian
noise, which is evenly distributed over the wavelet
coeflicients [6]. Wavelet shrinkage removes Gaus-
sian noise, but preserves sharp features of the sig-
nal. Unfortunately, thresholding of linear wavelet
transforms does not work well in strongly non-
Gaussian environments [7]. For example, a linear
wavelet transform of i.i.d. Cauchy noise does not
result in independent nor identically distributed
wavelet coefficients [7]. Moreover, when the noise
contains impulses, speckles, or is non-symmetrically
distributed, wavelet methods do not produce sat-
isfactory results.

In order to cope with heavy-tailed noise sources,
several nonlinear multiresolution transform algo-

rithms have been proposed [15], [7], [13] and have
been mainly based on pyramidal decomposition
structure. Only the case of zero-mean symmetric
noise distributions (Gaussian, Laplacian, Cauchy,
etc.) has been considered.

In order to handle non-Gaussian noise, much
effort has gone into combining nonlinear filtering
techniques with time-frequency domain analysis
[12], [10], [5]. For example, in [10], the so-called
smoother-cleaner wavelet decomposition was used
to locate outliers and replace them with the local
median. In [12], linear filters of wavelet decom-
position were replaced with order statistic based
Chameleon filters.

In the present work, we focus on non-Gaussian
and specifically, non-symmetric noise distributions.
Speckle noise is one such example and can be found
in coherent imaging systems. Another example of
a non-symmetric noise source is a mixture of two
Gaussian densities. That is,

gt)=p-ftipi01) + A —p)- ftpgso0) (1)

where p; and o7 are the mean and standard devi-
ation of the first Gaussian density and py and o
are the corresponding parameters for the second
density. Such a model is often encountered when
the noise originates from two separate sources.
We propose a two-stage processing approach to
denoise signals embedded in non-Gaussian noise.
In the first stage, we employ stack filters [16] which
are statistically optimized for the given noise dis-
tribution. In the second stage, we apply multires-
olution transform-based denoising, be it wavelet
shrinkage or other similar techniques. We expect
the stack filter to suppress outliers while retaining



important detail information in the signal. More-
over, we expect the remaining noise at the output
of the stack filter to be closer to a zero-mean Gaus-
sian distribution than the noise at the input to the
stack filter. Consequently, the purpose of multires-
olution denoising applied after the first stage is to
suppress the remaining noise.

In Section 2, we give a brief review of statis-
tical stack filter optimization and discuss the de-
tails concerning the proposed method. Section 3
describes the second stage, which consists of trans-
form based denoising. Finally, Section 4 contains
numerical simulation results.

2. STACK FILTER OPTIMIZATION

Stack filters constitute an important class of non-
linear filters based on monotone Boolean functions
[16]. Statistical properties of stack filters have
been studied in terms of output distributions and
moments for i.i.d. input signals [18],[1]. Conse-
quently, it becomes possible to optimize stack fil-
ters in the mean square sense [2]. In other words,
the knowledge of the distribution of the input,
which is assumed to be i.i.d., allows us to find a
stack filter which minimizes the output variance
of the filter.

A window-width n stack filter is based on a
monotone (positive) Boolean function f : {0,1}" —
{0,1}. The well-known property of threshold de-
composition [16] allows us to operate on the multi-
level, rather than on the binary, domain. That is,
since positive Boolean functions contain no negated
literals in their minimal disjunctive normal forms,
the operations of conjunction and disjunction, or
equivalently, AND and OR, can be replaced by
the MAX and MIN operations on the multi-level
domain. For example, the Boolean function
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(where - means conjunction and + means disjunc-
tion) corresponds to

Sf (Xl,XQ,Xg) = Imax {min {Xl,XQ} ,min {XQ,XQ,}}

where X1, X9, X3 are real-valued variables. Sup-
pose that the input variables of some stack filter

St () are i.i.d. random variables with distribution
F(t)=Pr{X,; <t}

Then, it is well known [1] that the output
Y =Sy (X1,...,Xn)

of the stack filter has output distribution

V()= A(L-F@O)-F@" (2
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where
Ai=|{z € E™ : f(x) =0}

The variance py = E {(Y —-F {Y})Q} of the out-
put Y of the stack filter can be written as [2]
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Since we assume non-symmetric input noise
distributions, our goal is to minimize py under the
constraint of zero-mean output. This constraint
can be expressed as

n
> AM(F,1,n,i) =0
i=0
and is easily incorporated into any optimization
procedure. Moreover, it is important to have ad-
ditional constraints on parameters A;, since

?

So, as a result of the optimization, we obtain the
parameter set A = {Ag, A1,...,A,}. It should
be mentioned, however, that a set A of param-
eters does not uniquely define a stack filter. In
other words, a number of stack filters can have the
same parameters A, all having the same output
variance and hence, all being statistically optimal.
One approach to choosing one stack filter, which
preserves details better than the rest of its statis-
tically equivalent filters, is to use sample selection
probabilities. This is discussed in [14].



3. TRANSFORM BASED DENOISING

Transforms have been used for a long time in noise-
removal applications. Examples are linear and
nonlinear filters based on FFT type structures, op-
timal Wiener and adaptive LMS type filtering in
transform domain [3],[8]. Signal/image process-
ing in transform domain rather than in spatial
domain has certain advantages of incorporating
a priori knowledge on signals into the design of
processing algorithms and in terms of computa-
tional expenses. The transfer from spatial domain
into the transform domain is especially useful if
it is applied locally rather than globally. Local
adaptive filters [17] work in the domain of an or-
thogonal transform in a moving window and non-
linearly modify the transform coefficients to ob-
tain an estimate of the central pixel. Nonlinear
filtering in wavelet transform domain was intro-
duced in terms of wavelet de-noising by Donoho
and Johnstone [6], and has been extended by sev-
eral authors. In [4], translation invariant wavelet
de-noising algorithms were introduced and tested
on different signals. In [11], wavelet transform
domain de-noising was combined with empirical
Wiener filtering for better performance. In [9],
local averaged transform domain de-noising was
presented. The difference between this filter and
the one in [17] is that nonlinear modifications of
the transform coefficient within the window give
us an estimate of the overall sub-image within the
window and not only of the central pixel. Thus, it
makes an overlap of estimates of pixels of neigh-
boring windows; i.e. we obtain multiple estimates
for the same pixel. Tt then averages all the above
estimates to obtain the final estimate for this pixel.

Transform based denoising consists of the fol-
lowing three steps:

1. Computing spectral coefficients
B(m) = HY (m)

of the observed signal Y (m) (within the win-
dow in the case of local transform based de-
noising) over the chosen nonsingular trans-

form H.

2. Point-wise multiplication of the obtained trans-
form coefficients with the filter coeflicients
{m(m)}: &i(m) = n;(m)B;(m) where ¢ =
m,m+1,... m+M-—1.

3. Inverse transformation H™! of the output
signal spectral coefficients a(m), X(m) =

H'&(m).

In [8], an adaptive de-noising algorithm com-
bining wavelet shrinkage and multi-base local av-
eraged transform based filters has been developed.
We apply this algorithm as our second stage of
processing.

4. SIMULATION RESULTS

To test the effectiveness of our method, we selected
a signal shown in Figure 1. As an additive noise
source, we used a mixture of two Gaussian sources,
as shown in (1). The parameters were chosen to
bep=0.7 1, =0,010=0.3, o =1 and 02 =0.1.
The contaminated signal is shown in Figure 2.

A stack filter was optimized using the method
described in Section 2. Figures 3 and 4 show two
histograms of the noise before and after applica-
tion of the optimal stack filter. Three things can
be seen from these figures: the variance of the
noise is reduced, the outliers are essentially sup-
pressed, and the resulting output distribution is
closer to a Gaussian one. Thus, we expect that
applying transform based denoising will result in
significant reduction of noise level. Figure 5 shows
the signal after applying a combined wavelet and
local transform based denoising algorithm [8]. Fi-
nally, Figure 6 shows the histogram of the remain-
ing noise after the entire filtering process.

5. CONCLUSION

We have considered the case of strongly non -
Gaussian noise contamination. Additionally, we
have allowed the probability density function of
the input noise to be nonsymmetric. It is shown
that the proposed procedure, which incorporates
optimal stack filtering in the first stage and trans-
form based denoising in the second stage, deals
effectively with such noise models.



Figure 4: Histogram of the remaining noise at the
output of the stack filter

Figure 1: Test signal (concatenation of “Blocks”

and “HeavySine”)
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Figure 5: Resulting signal after applying stack fil-
tering and transform based denoising
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Figure 3: Histogram of input noise stack filtering and transform based denoising
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