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ABSTRACT nonlinear filter and vise versa [6]. One way out is to apply an
adaptive nonlinear smoother. A basic idea put behind the locally
adaptive aproach is to process the noisy signal fragment by
means of nonlinear filter suited in the best (optimal) manner for
situation at hand. In other words, the local signal and noise
roperties and the priority of requirements of fragmentary data
iltering should be taken into consideration. By minimizing the
output local errors one obtains the minimization of the total error
in MSE or MAE sense.

There already exist many locally-adaptive (data dependent)
nonlinear 1-D filters. As examples, let us mention ones proposed
'‘by R. Bernstein [7], A. T. Fam et al [8], Ho Ming Lin [9],
Runtao Ding and A. N. Venetsanopoulos [10], S. Siren, P.
Kuosmanen and K. Egiazarian [11]. Some of them are heuristic
ones [8],[9] and suited well for processing quite simple signals,
the others [7],[10] require a priori knowledge of the noise
component characteristics that is not always at disposal.

1. INTRODUCTION Our intention was to design an algorithm applicable in
situations of a priori ambiguity of noise level and model. The

During recent years the filter banks attracted attention of only preliminary assumptions were the following:

many scientists and researchers. In fact, the filter banks formed1 ) the fluctuative (i e., additive+multiplicative) noise has the
y scientl : ' ' zero mean and symmetrical probability density function

themselves in a special area of knowledge and found various (0.d.f);
applications [1]. It is more easy to explain the essense of filterz) o
bank within linear approach [2] because of the well developed
theory and the tools for linear filter design. However, for

. : L ) : 3)
nonlinear filters a similar approach is also valid and useful [3].

A well known advantage of nonlinear filters, in particular probability of its occurrence.
those ones based on order statistics is their ability to remove The proposed locally-adaptive nonlinear filtering procedure

imoulsive noise from data and. in eneral. to perform in is based on the use ofZaparameter introduced in our papers
Impuisiv : . . , N gel ’ P ! [12],[13]. Besides, we give and apply quasioptimal rules for filter
appropriate manner in mixed noise environment [4]. Another

excellent pronerty of some nonlinear filters is that thev are ableselection from the nonlinear filter bank. This bank is organized in
X property ! : ' y such a manner that it contains the algorithms possessing the

to preserve dls.co.ntlnumes and abrupt changes of signals mucrbroperties essentially different from each other. The operation of
better than their linear counterparts [4],[5]. In other words, the the proposed filters is explained and described below. Some

?nogt?elirgilt?‘r;‘g ii'%%rghrgrsislgiu?;%rﬁ’;%‘:'%ﬁ;?:sgzgan:écbg;ﬂz numerical simulation results proving the efficiency of the
P 9 p : p considered approach are presented as well.

that it is difficult to describe the dynamic properties of nonlinear
filters analytically, especially taking into ammt that they
depend upon noise characteristics [5].

Despite the aforementioned advantages of nonlinear filters 2 CONSIDERED SIGNAL/NOISE MODEL
no one of them is able to simultaneously satisfy a set of
contradictory requirements: to provide the sufficient efficiency of i i ) )
fluctuative noise suppression, the reliable spike removal and L€t us consider the following signal/noise model of the
minimal dynamic errors. Commonly, the higher the efficiency of Sampled data sequendg(t )i =1...,|
noise suppression (provided by the scanning window size
increasing), the worse dynamic propeties of the considered

An approach to synthesis of adaptive 1-D filters based on
nonlinear filter bank and the use of Z-parameter is put forward.
The nonlinearity of elementary filters ensures the predetermined
robustness of adaptive procedure with respect to impulsive nois
and outliers. In turn, a local adaptation principle enables to
minimize the total output error being a sum of the residual
fluctuation component and dynamic errors. The useZof
parameter as a local activity indicator permits to “recognize " the
signal and noise properties for given fragment quite surely and
thus, to select a proper filter from the bank at disposal.
Numerical simulation results confirming the efficiency of the
proposed approach are presented.

the noise samples are assumed to be i. i. d. random
variables;
the impulsive noise is characterized by not very large



ﬂ(ti)s(ti)jLna(ti)ywith probability1- P,, suppressing filters (NSFs) as well as some filters with
U(ti)={ sit) (t), with probabiliy P ’, (1) “intermediate" characteristics (ICFs), i. e., the filters combining
JF Mgl with probabiliy B, not bad edge/detail preservation with rather well noise

where S(ti) is the true signal value of thieth sample; u suppression ability. The next requirement is to provide an

denotes the multiplicative noise having the mean equal to one2PPropriate robustness with respect to spikes. In this sense the
and the variancerj dependent upon signal amp"turﬁéti] e p_ropertles_ of nonlinear filters depend upon the scanning window

, , . - . ‘ size, the filter type, some parameters (asxfdrimmed or center
9. o2t )=k,S°(t;); n, is the zero mean additive noise with weighted median (CWM) filters [4],[10]), and even upon the
characteristics of impulsive noise. Finally, it is desirable to
ensure rather high computational efficiency of the filters as well
occurring with the probabilityP,, (nim >3/ +a?(t, ) It ~ asof the adaptive procedure. _ _ o

P | p| ”( ) Taking the aformentioned requirements into consideration

is supposed that both additive and multiplicative noise havethe following recommendations concerning selection of the
p.d.f.s symmetrical with respect to their meaks,is assumed to filters of the bank seem to be reasonable. An appropriate DPF is

the variances; n,  defines the amplitude of impulsive noise

be not larger than 0.1. a standard median filter with scanning window slide= . The
We chose the following rather simple model of the test CWM and the FIR-hybriad median filters [4] are also quite good
signal choice but they are less robust with respect to spikes. The other
S(ti):arctg(yti), (2) nonlinear filters with small scanning window sizes can be also

used as the DPFs.

i ) . o The acceptable NSFs are the Wilcoxon and Hodges-Lehman
coordinate, At define the sampling ratei, is the parameter fiters with largeN [10] combining high efficiency of fluctuative

(i, ~1/2). The values ofr , At, i,, and| are chosen in such a noise reduction with perfect robustness with respect to spikes.
However, their computation efficiency is not appropriate in many
practical situations. That is why, instead of them as the NSFs it is

where y is the parameterit =(i—i,)At denotes the time

manner that |yt|=yt, ~2...3. Due to this the test signal

contains three types of fragment: possible to use the-trimmed filters havinga ~ 0.2...0. 25and

1) almost constant signal with valuefS(t | ~1, this is N=0.13.
observed at the beginning and at the end of the signal (2); So, as appropriate ICFs one could use th&immed,

2) fragments with large absolute values of the second Wilcoxon and Hodges-Lehman filters wittN = 7r 9.
derivative of signal component; According to their properties they are in between the considered

3) fragments with almost linear behavior (rapidly increasing DPFs and NSFs. Certainly, someone could propose the other
signal) observed wheb/t,|< 05. filters to be added to the filter bank according to his opinion or

epreferrances. But as it will be seen from further analysis the
desirable effect of adaptive filtering is reached even with the use
of such, rather small, filter bank.

The reasons for selection of such a test signal are th
following. The signal (2) does not contain discontinuities and
this is important for derivations done below. The analysis of
different fragments of the signal permits to evaluate filter

properties from different points of view: 4. PROPOSED ADAPTIVE PROCEDURE AND
e to estimate the noise suppression efficiency for almost Z-PARAMETER PROPERTIES

constant signal fragments;

e to estimate the dynamic errors (bias of filter output) and
their influence on local and integral characteristics of filter Obviously, the dynamic error (the bias),, of the i-th
performance; sample of the output signal and the variance of residual

 to study the behavior of filter outputs for rapidly changing fiyctuationso? can be easily derived for the standard mean filter
agr:;iélrn Lhne cr):'gdt::“?;rtfg: ttzi Tﬁg? \(/z)lz;eSt the test with scanning window sizéN usgd for .procgssing the signal

’ ' ’ corrupted by zero mean fluctuative noise with locally constant

signal can be considered as a ramp (or smoothed) edge, on the,jance o2 . For example, one can derive the variance of
other hand, the test signal is a so-called trajectory curve, i.e., the

sequence of “noisy” estimates of angle coordinates of a movingmean filter output for i.i.d. fluctuative noise ag,,,~ o /N .

target. In [14], it is shown that the variance of residual fluctuations
of nonlinear filter outputs depends upon many factors. However,
the following approximations of” can be used

3. NONLINEAR FILTER BANK Owm ~Oon #1207 [N=1207 ., 3)
FORMATION ol ,~14c] [N=140? ., (4)
wherec, , o7, , o>, are the variances of residual fluctuations

While selecting the nonlinear filters of the bank we took into ) .
account several aspects. First, these filters should have ratheflr the W|Ico>_<on|, I—_|I_ohdges-Lehman ar;}d—tnmrued (x—hO.Z) h
different properties. In other words, among them there should bellters, respectively. e experiments have shown that these
the detail preserving filters (DPFs), the efficient noise expressions were approximately  valid not only for signal



fragments with linear behavior but for other kinds of fragments where U fp(ti) is the output of preliminary filter having scanning

as well. It is worth noting here that the standard median filter and
some other DPFs lose their efficiency of noise supression for

rapidly increasing/decreasing signals [14].

Now let us suppose that the signal component can be well

approximated by the following expression

S = S(ti+k) =S + S kAt+ Sﬂsztz ) )
where § =S(t,); S =S(t) and §'=S'(t,) are the first and
second derivatives of the signal component inittte sample,
respectively. Then introducing notationsAg =S'At,

A%, =S'At® one getsS,, # S +Ag k+A% K.
Thus, the dynamic error (biag),; of the mean filter can be
derived as

1+

-1
& S +Ag k+ALK?

Z 2k+1

2

AT = -S ~008A% N*,  (6)

It can be shown that the term proportial #t°® does not

influence the dynamic error valu&l™".

The investigation of dynamic errors of the considered
nonlinear NSFs has resulted in the following approximations
[15]

Ay ~0.9AF™, (7a)
A' ~ 0.85AT", (7b)
AT~ 0.6AF, (7c)

where A% | AT, and A%" are the dynamic errors of the outputs

of Wilcoxon, Hodges-Lehmanm-trimmed (o = 0. 2) filters with
the same\, respectively.

The total errors; of thei-th sample can be determined as
S :6r2i+(ADi)2' (8)

Thus, taking expressions (3), (4), (6), (7) into account and

assumingds/oN =0 one obtains the optimal window si2¢, ;

of the filters for each samplender the criterion of minimal local
total error §,. For the Wilcoxon, Hodges-Lehman awd

trimmed filters (@=0.2 the optimal window sizes are,
respectively, derived as
.2
Nohptll 24@le 2Si)Z) 4

<2967 (2 P ).

Therefore, in order to select optimhil,

N wil

opti

©

N a-tr (10)

opti

i fOr processing the
data one has to somehow estimate the local mn(/Azsi . For
this purpose the Z-parameter can be used. It is defined as

(t.))

é(

1

|+m

Np1
2

(11)

window N, and some “middle” properties. For this goal, the

ICF from the nonlinear filter bank can be applied.

Both analytical and numerical analyses of Eaparameter
statistical properties resulted in the following approximation for
the mean values

E[z ||~ 5 /(08+0.18 +0.35?),

where g, = |Am/0n| ; the sign ofZ, coincides with the sign of

(12)

Ay, - In fact, thez-parameter values are within the lim[ts1;1] .
Then if the valueZ, does not differ essentially from its
mean value it becomes possible to derige from Z; . In order
to estimate the ratier?, (AZSi)2 for the Wilcoxon and Hodges-
the
For the a-trimmed filters,

Lehman  filters  one
o2, /(& F = 0.005N?/ 57 .
formula afi/(AZSi)2 =0.003N;/4? is valid. Then, the optimal

scanning window sizes of the considered nonlinear filters can be
derived as

N2~ NI~ 2.4(0.005N¢ /B2 f7,

a-tr .2
N = 2.9(0.003N¢ /52 ). (15)

This procedure may seem too complicated. However, the
bank contains a limited number of filters. So, fr, selected

can use expression

the

(14)

beforehand it is possible to calculate the mean valﬁkﬂ
corresponding teach filter.

Then the adaptive procedure becomes rather simple and it
consists in the following

U,t) if|z|>zd

U t-, H ) : th

Ue(t)= ;2(') el elsizs] (15)
Ut |f |z|<zp,

where Z"....,Z¢ are the thresholdsQ is the number of

thresholds; U, (t,),...,U.,(t;) are the outputs of the nonlinear
filters sorted in order of improved noise supression efficiency
and making worse their dynamic properties. In other words, the
U,(t)) corresponds to the best DPF add,,(t, - Jo the best
NSF. In many practical situations it is sufficient to use only three
filters (Q=2) - one serving as the DPF (fdZ,|> Z}'), the
other one performing preliminary processing and it coincides
with the ICF (its output is assigned to adaptive filter output if
|Z|e ]z;h;z;h], and the latter acts as the NSF (@] < Z}")

All the derivations done above are valid for the case of spike

absense in the scanning window. If {ha sample is corrupted
by spike then the corresponding difference

AU, =|U "’(tj )—U(tjl is essentially larger than the other
differences in (11) and, thus, tHeparameter absolute values in
the neighborhood of thethe sample tend to one. According to
(15) in this case the output of DPF is assignet f&ft, ). If the



standard median filter is applied as the DPF, then the spike is  We consider several variants of nonlinear filter bank. The
removed properly. first one contains only the Wilcoxon filters witN = ,®, and
13 used as the DPF, ICF, and NSF, respectively. It is denoted as
Wil in Tables 1 and 2. Similarly, the second variant contains
5. NUMERICAL SIMULATION RESULTS Hodges-Lehman filters with the samé (H-L). The threshold

values areZ" = 0. 1%nd Z}' = 0. 35for the adaptive procedures

‘The numeriggl simglations were _p.e.rformed .for different based on the use of the Wilcoxon and Hodges-Lehman filters.
variances of additive noise and probabilities of spikes. Tables 1 The third variant(e-tr) of filter bank includes three:-

and 2. present. the MSE and .MA.E values for thg cases of non'trimmed filters with N= 5 9, and 13. For the-trimmed filter
adaptive nonliner filter application and adaptive procedures bank the thresholds are 0.2 and 0.4
based on (15). T.he. MSE.vaIues are denotegasy, , and i, In case of spike absense thetrimmed, Wilcoxon and
for the DPF., preliminary filter (ICF) and NSF from the bank. The Hodges-Lehman withN = Sare used as the DPFs. When the
corresponding MAE values are denotedms «,, and «;;. spikes are present the standard median filtdée=( ) isfused as
The DPF, ICF and NSF have the scanning window stes , 5 ppF. This filter is added to aforementioned filter banks to
9, and 13, respectively. The valugs, and x,, show the MSE  provide better robustness of adaptive procedaocalise the other
and MAE for the proposed adaptive filters base@-@arameter. ~ DPFs with N= 5 have more poor robust properties than the
standard median filter. The notatiolgil+M, H-L+M, a-tr+M
are used for the corresponding adaptive procedures.

Table 1: MSE values As it can be seen from Table 1 for relatively small values of
o; (02=0.001) and P, = O the best results (minimaj )

Ellte& o Pinp Xs Zo Z13 Xad among non-adaptive filters are provided by the DPFs with

an x107 | x10° | x10° | x107 N =5. This happens because the influence of dynamic errors for

small 2 is more essential than the influence of residual

Wil 0001 ] 0 0.26 0.37 1.04| 0.22 fluctuative noise. However, the adaptive procedure guarantees

Wil 0.003 | 0 070 | 062] 1.23| 0.51 even smallery,, value than the MSE value for any non-adaptive
Wil+M | 0.001 [ 0.01| 0.55 0.49 1.19 0.53 . . i 5 2
WitM 10.003 T 0011 1.30 0.80 1.40 0.97 nonlinear filter of the filter bank. For larges; (o2 =0.003)

H-L 0.001 | oO. 0.26 0.36 0.90 0.22 and B, = 0 the best among the non-adaptive filters are those
H-L 0.003 ]| 0 070 | 064] 121| 051 ones with N= YQo-trimmed is the best one). In this case the
HL+M | 0.001 | 0.01| 057 | 050( 1.04] 0.49 adaptive filters also produce better results than the best among
HL+M [ 0.003 | 0.01| 132 | 0.82] 137 0.97 the considered non-adaptive filters.

o-tr 0001 ]| O 0.26 0.20 0.27 0.19 When the spikes are present the adaptive procedures do not
a-tr 0.003 | O 0.76 | 0.50| 0.50| 0.49 ensure they,, less than the best non-adaptive filter. However,
o-tr+M | 0.001 | 0.01| 0.54 | 0.32 0.47 0.40 usually the adaptive procedures are superior in comparison with
o-tr+M | 0.003 | 0.01| 1.30 0.63| 0.65| 0.72 the two worst non-adaptive algorithms. The difference between

Z.a @nd min(zg,7..7:5) is not too large. That is why, in

general, the adaptive filters provide the best results or they
ensure the MSE values quite close to the best for rather wide
variety of additive and impulsive noise characteristics.

Table 2: MAE values

Filter o2 Pro K Kq Kis Ko The MAE criterion is often used in practice, especially for
bank characterizing the filter properties in non-gaussian noise
Wil 0.001 ] 0 0.043| 0.0571 0.092? 0.044 environments. The results of MAE value analysis for different
wil 0.003 ] 0 0.070] 0067 o0.101 0.065 non-adaptive filters and various adaptive procedures are in good
Wil+M | 0.001 | 001 0.080] 0.069 o0.108 o079  @agreement with the results obtained for MSE criterion. So, the
WilkM 1 0.003 | 0.01] 01171 o0.08% 011l 0.106 proposed adaptive procedures are rather effective from different
H-L 0.001 | 0 0.043| 0054 009% 0045 Pointsof view. o
AL 00031 0 00711 0074 0109 0066 One more conclusion is that the, and x,, values for the
HL+M | 0.001 | 0.01] 0.082] 0.073 0.10B 0.077 adaptive procedure based ontrimmed filters are usually better
HL+M | 0003 | 001l 0117 0083 o0.116 0107 than for the other ones. So taking this into account and
T 0001 ] 0 0.044| 003d 0042 0.038 comparing the computational efficiency of the component filters
et 0.003 | 0 00721 0051 0O 05‘; 0.057 the last variant of adaptive procedure in the Tables seems to be
- . —— - . preferrable for practical implementation.
a-tr+M | 0.001 [ 0.01| 0.079| 0.053 0.06p 0.059
o-tr+M | 0.003 | 0.01| 0.116f 0.070 0.07p 0.081




6. CONCLUSIONS

It is shown that the adaptive procedure based on selection of

nonlinear filter from the bank depending upon Z-parameter value[13]
has a theoretical background and can be optimized. The proposed
adaptive procedure produces good quality of data processing in
case if a priori unknown characteristics of mixed noise varying in
rather wide limits.
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