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ABSTRACT

An approach to synthesis of adaptive 1-D filters based on
nonlinear filter bank and the use of Z-parameter is put forward.
The nonlinearity of elementary filters ensures the predetermined
robustness of adaptive procedure with respect to impulsive noise
and outliers. In turn, a local adaptation principle enables to
minimize the total output error being a sum of the residual
fluctuation component and dynamic errors. The use of Z-
parameter as a local activity indicator permits to “recognize ” the
signal and noise properties for given fragment quite surely and,
thus, to select a proper filter from the bank at disposal.
Numerical simulation results confirming the efficiency of the
proposed approach are presented.

1. INTRODUCTION

During recent years the filter banks attracted attention of
many scientists and researchers. In fact, the filter banks formed
themselves in a special area of knowledge and found various
applications [1]. It is more easy to explain the essense of filter
bank within linear approach [2] because of the well developed
theory and the tools for linear filter design. However, for
nonlinear filters a similar approach is also valid and useful [3].

A well known advantage of nonlinear filters, in particular,
those ones based on order statistics is their ability to remove
impulsive noise from data and, in general, to perform in
appropriate manner in mixed noise environment [4]. Another
excellent property of some nonlinear filters is that they are able
to preserve discontinuities and abrupt changes of signals much
better than their linear counterparts [4],[5]. In other words, the
nonlinear filtering algorithms usually provide less dynamic errors
in output signals in comparison to linear filters. One problem is
that it is difficult to describe the dynamic properties of nonlinear
filters analytically, especially taking into account that they
depend upon noise characteristics [5].

Despite the aforementioned advantages of nonlinear filters
no one of them is able to simultaneously satisfy a set of
contradictory requirements: to provide the sufficient efficiency of
fluctuative noise suppression, the reliable spike removal and
minimal dynamic errors. Commonly, the higher the efficiency of
noise suppression (provided by the scanning window size
increasing), the worse dynamic propeties of the considered

nonlinear filter and vise versa [6]. One way out is to apply an
adaptive nonlinear smoother. A basic idea put  behind the locally
adaptive aproach is to process the noisy signal fragment by
means of nonlinear filter suited in the best (optimal) manner for
situation at hand. In other words, the local signal and noise
properties and the priority of requirements of fragmentary data
filtering should be taken into consideration. By minimizing the
output local errors one obtains the minimization of the total error
in MSE or MAE sense.

There already exist many locally-adaptive (data dependent)
nonlinear 1-D filters. As examples, let us mention ones proposed
by R. Bernstein [7], A. T. Fam et al [8], Ho Ming Lin [9],
Runtao Ding and A. N. Venetsanopoulos [10], S. Siren, P.
Kuosmanen and K. Egiazarian [11]. Some of them are heuristic
ones [8],[9] and suited well for processing quite simple signals,
the others [7],[10] require a priori knowledge of the noise
component characteristics that is not always at disposal.

Our intention was to design an algorithm applicable in
situations of a priori ambiguity of noise level and model. The
only preliminary assumptions were the following:
1) the fluctuative (i. e., additive+multiplicative) noise has the

zero mean and symmetrical probability density function
(p.d.f.);

2) the noise samples are assumed to be i. i. d. random
variables;

3) the impulsive noise is characterized by not very large
probability  of its occurrence.
The proposed locally-adaptive nonlinear filtering procedure

is based on the use of a Z-parameter introduced in our papers
[12],[13]. Besides, we give and apply quasioptimal rules for filter
selection from the nonlinear filter bank. This bank is organized in
such a manner that it contains the algorithms possessing the
properties essentially different from each other. The operation of
the proposed filters is explained and described below. Some
numerical simulation results proving the efficiency of the
considered approach are presented as well.

2. CONSIDERED SIGNAL/NOISE MODEL

Let us consider the following signal/noise model of the
sampled data sequence � �^ ` IitU i ,,1, � 
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where � �itS  is the true signal value of the i-th sample; P

denotes the multiplicative  noise having the mean equal to one
and the variance 2

P
V   dependent upon signal amplitude � �itS , e.

g., � � � �ii tSkt 2
0

2  
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V ; an  is the zero mean additive noise with

the variance 2
aV ; impn  defines the amplitude of impulsive noise

occurring with the probability impP  � �¸
¹
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is supposed that both additive and multiplicative noise have
p.d.f.s symmetrical with respect to their means, 0k  is assumed to

be not larger than 0.1.
We chose the following rather simple model of the test

signal
� � � �ii ttS Jarctg ,                                           (2)

where J  is the parameter; � � tiiti '� 0  denotes the time

coordinate, t'  define the sampling rate, 0i  is the parameter

( 20 Ii | ). The values of J , t' , 0i , and I  are chosen in such a

manner that 321 �| Itt JJ . Due to this the test signal

contains three types of fragment:
1) almost constant signal with values � � 1|itS , this is

observed at the beginning and at the end of the signal (2);
2) fragments with large absolute values of the second

derivative of signal component;
3) fragments with almost linear behavior (rapidly increasing

signal) observed when 5.0�ItJ .

The reasons for selection of such a test signal are the
following. The signal (2) does not contain discontinuities and
this is important for derivations done below. The analysis of
different fragments of the signal permits to evaluate filter
properties from different points of view:
x to estimate the noise suppression efficiency for almost

constant signal fragments;
x to estimate the dynamic errors (bias of filter output) and

their influence on local and integral characteristics of filter
performance;

x to study the behavior of filter outputs for rapidly changing
signals (in the middle part of the signal (2)).
Moreover, on one hand, for the large values t'J , the test

signal can be considered as a ramp (or smoothed) edge, on the
other hand, the test signal is a so-called  trajectory  curve, i.e., the
sequence of “noisy” estimates of angle coordinates of a moving
target.

3. NONLINEAR FILTER BANK
FORMATION

While selecting the nonlinear filters of the bank we took into
account several aspects. First, these filters should have rather
different properties. In other words, among them there should be
the detail preserving filters (DPFs),  the efficient noise

suppressing filters (NSFs) as well as some filters with
"intermediate" characteristics (ICFs), i. e., the filters combining
not bad edge/detail preservation with rather well noise
suppression ability. The next requirement is to provide an
appropriate robustness with respect to spikes. In this sense the
properties of nonlinear filters depend upon the scanning window
size, the filter type, some parameters (as for D-trimmed or center
weighted median (CWM) filters [4],[10]), and even upon the
characteristics of impulsive noise. Finally, it is desirable to
ensure rather high computational efficiency of the filters as well
as of the adaptive procedure.

Taking the aformentioned requirements into consideration
the following recommendations concerning selection of the
filters of the bank seem to be reasonable. An appropriate DPF is
a standard median filter with scanning window size 5 N . The
CWM and the FIR-hybriad median filters [4] are also quite good
choice but they are less robust with respect to spikes. The other
nonlinear filters with small scanning window sizes can be also
used as the DPFs.

The acceptable NSFs are the Wilcoxon and Hodges-Lehman
filters with large N  [10] combining high efficiency of fluctuative
noise reduction with perfect robustness with respect to spikes.
However, their computation efficiency is not appropriate in many
practical situations. That is why, instead of them as the NSFs it is
possible to use the D-trimmed filters having 25.02.0 �|D  and

139� N .
So, as appropriate ICFs one could use the D-trimmed,

Wilcoxon and Hodges-Lehman filters with 7 N  or 9.
According to their properties they are in  between the considered
DPFs and NSFs. Certainly, someone could propose the other
filters to be added to the filter bank according to his opinion or
preferrances. But as it will be seen from further analysis the
desirable effect of adaptive filtering is reached even with the use
of such, rather small, filter bank.

4. PROPOSED ADAPTIVE PROCEDURE AND
Z-PARAMETER PROPERTIES

Obviously, the dynamic error (the bias) iD'  of the i-th

sample of the output signal and the variance of residual
fluctuations 2

rV  can be easily derived for the standard mean filter

with scanning window size N used for processing the signal
corrupted by zero mean fluctuative noise with locally constant
variance 2

fV . For example, one can derive the variance 2
rV  of

mean filter output for i.i.d. fluctuative noise as Nfmean
22

VV | .

In [14], it is shown that the variance of residual fluctuations
of nonlinear filter outputs depends upon many factors. However,
the following approximations of 2

rV  can be used  
2222 2.12.1 meanflhwil N VVVV  ||
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where 2
wilV , 2

lh�V , 2
tr�D

V  are the variances of residual fluctuations

for the Wilcoxon, Hodges-Lehman and D-trimmed (D=0.2)
filters, respectively. The experiments have shown that these
expressions were approximately  valid not only for signal



fragments with linear behavior but for other kinds of fragments
as well. It is worth noting here that the standard median filter and
some other DPFs lose their efficiency of noise supression  for
rapidly increasing/decreasing signals [14].

Now let us suppose that the signal component can be well
approximated by the following expression

22)( tkStkSStSS iiikiki 'cc�'c�  
��

,                    (5)

where � �ii tSS  ; � �ii tSS c c  and � �ii tSS cc cc  are the first and

second derivatives of the signal component in the i-th sample,
respectively. Then introducing notations tSiiS 'c ' ,

22 tSiiS 'cc '  one gets 22 kkSS iSiSiki '�'�|
�

.

Thus, the dynamic error (bias) iD'  of the mean filter can be

derived as
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It can be shown that the term proportial to 3t'  does not

influence the dynamic error value mean
iD' .

The investigation of dynamic errors of the considered
nonlinear NSFs has resulted in the following approximations
[15]

mean
D

wil
D '|' 9.0 ,                                      (7a)

mean
D

lh
D '|' � 85.0 ,                                   (7b)

mean
D

tr
D '|' � 6.0D ,                                     (7c)

where wil
D' , lh

D
�' , and tr

D
�'D  are the dynamic errors of the outputs

of Wilcoxon, Hodges-Lehman, D-trimmed ( 2.0 D ) filters with
the same N, respectively.

The total error iG  of the i-th sample can be determined as

� �22
iDiri '� VG .                                      (8)

Thus, taking expressions (3), (4), (6), (7) into account and
assuming 0 ww NG  one obtains the optimal window size iNopt

of the filters for each sample under the criterion of minimal local
total error iG . For  the Wilcoxon, Hodges-Lehman and D-

trimmed filters ( 2.0 D ) the optimal window sizes are,
respectively, derived as

� �� � 2.0222
optopt 4.2 iSif

lh
i
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V ,                        (9)
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opt 9.2 iSif
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Therefore, in order to select optimal iNopt  for processing the

data one has to somehow estimate the local ratio 2
iSif 'V .  For

this purpose the Z-parameter can be used. It is defined as
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where � �i
fp tU  is the output of preliminary filter having scanning

window pN  and some “middle” properties. For this goal, the

ICF from the nonlinear filter bank can be applied.
Both analytical and numerical analyses of the Z-parameter

statistical properties resulted in the following approximation for
the mean values

> @ � �23.01.08.0 iiiiZE EEE ��| ,                        (12)

where ifiDi VE ' ; the sign of iZ  coincides with the sign of

iD' . In fact, the Z-parameter values are within the limits > @1;1� .

Then if the value iZ  does not differ essentially from its

mean value it becomes possible to derive  iE  from iZ . In order

to estimate the ratio � �222
iSif 'V  for the Wilcoxon and Hodges-

Lehman filters one can use the expression

� � 24222 005.0 ipiSif N EV  ' . For the D-trimmed filters, the

formula � � 24222 003.0 ipiSif N EV  '  is valid. Then, the optimal

scanning window sizes of the considered nonlinear filters can be
derived as

� � 2.024
optopt 005.04.2 ip

lh
i

wil
i NNN E|| � ,                  (14)

 � � 2.024
opt 003.09.2 ip

tr
i NN ED |� .                          (15)

This procedure may seem too complicated. However, the
bank contains a limited number of filters. So, for pN  selected

beforehand it is possible to calculate the mean values > @iZE

corresponding to each filter.

Then the adaptive procedure becomes rather simple and it
consists in the following
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where th
Q

th ZZ ,,1 �  are the thresholds, Q is the number of

thresholds; � �iQi tUtU 11 ,),(
�

�  are the outputs of the nonlinear

filters sorted in order of improved noise supression efficiency
and making worse their dynamic properties. In other words, the

)(1 itU  corresponds to the best DPF and )(1 iQ tU
�

 - to the best

NSF. In many practical situations it is sufficient to use only three
filters ( 2 Q ) - one serving as the DPF (for th

i ZZ 2! ), the

other one performing preliminary processing and it coincides
with the ICF (its output is assigned to adaptive filter output if

@ @thth
i ZZZ 21 ;� , and the latter acts as the NSF (for th

i ZZ 1d )

All the derivations done above are valid for the case of spike
absense  in the scanning window. If the j-th sample is corrupted
by spike then the corresponding difference

� � � �jj
fp

j tUtUU � '  is essentially larger than the other

differences in (11) and, thus, the Z-parameter absolute values in
the neighborhood of the j-the sample tend to one. According to
(15) in this case the output of DPF is assigned to � �i

fa tU .  If the



standard median filter is applied as the DPF, then the spike is
removed properly.

5. NUMERICAL SIMULATION RESULTS

The numerical simulations were performed for different
variances of additive noise and probabilities of spikes. Tables 1
and 2 present the MSE and MAE values for the cases of non-
adaptive nonliner filter application and adaptive procedures
based on (15). The MSE values are denoted as 5F , 9F , and 13F

for the DPF, preliminary filter (ICF) and NSF from the bank. The
corresponding MAE values are denoted as 5N , 9N , and  13N .

The DPF, ICF and NSF have the scanning window sizes 5 N ,
9, and 13, respectively. The values adF  and adN  show the MSE

and MAE for the proposed adaptive filters based on Z-parameter.

Table 1: MSE values

Filter
bank

2
aV impP

3

5

10�

u

F

3

9

10�

u

F

3

13

10�

u

F

310�

u

adF

Wil 0.001 0 0.26 0.37 1.04 0.22
Wil 0.003 0 0.70 0.62 1.23 0.51
Wil+M 0.001 0.01 0.55 0.49 1.19 0.53
Wil+M 0.003 0.01 1.30 0.80 1.40 0.97
H-L 0.001 0. 0.26 0.36 0.90 0.22
H-L 0.003 0 0.70 0.64 1.21 0.51
HL+M 0.001 0.01 0.57 0.50 1.04 0.49
HL+M 0.003 0.01 1.32 0.82 1.37 0.97
D-tr 0.001 0 0.26 0.20 0.27 0.19
D-tr 0.003 0 0.76 0.50 0.50 0.49
D-tr+M 0.001 0.01 0.54 0.32 0.47 0.40
D-tr+M 0.003 0.01 1.30 0.63 0.65 0.72

Table 2: MAE values

Filter
bank

2
aV impP 5N 9N 13N adN

Wil 0.001 0 0.043 0.057 0.092 0.044
Wil 0.003 0 0.070 0.067 0.101 0.065
Wil+M 0.001 0.01 0.080 0.069 0.103 0.079
Wil+M 0.003 0.01 0.117 0.082 0.111 0.106
H-L 0.001 0 0.043 0.058 0.093 0.045
H-L 0.003 0 0.071 0.072 0.109 0.066
HL+M 0.001 0.01 0.082 0.073 0.103 0.077
HL+M 0.003 0.01 0.117 0.085 0.115 0.107
D-tr 0.001 0 0.044 0.036 0.042 0.038
D-tr 0.003 0 0.072 0.057 0.054 0.057
D-tr+M 0.001 0.01 0.079 0.053 0.060 0.059
D-tr+M 0.003 0.01 0.116 0.070 0.070 0.081

We consider several variants of nonlinear filter bank. The
first one contains only the Wilcoxon filters with 5 N , 9, and
13 used as the DPF, ICF, and NSF, respectively. It is denoted as
Wil in Tables 1 and 2. Similarly, the second variant contains
Hodges-Lehman filters with the same N (H-L). The threshold
values are 15.01  

thZ  and 35.02  
thZ  for the adaptive procedures

based on the use of the Wilcoxon and Hodges-Lehman filters.
The third variant (D-tr) of filter bank includes three D-

trimmed filters with 5 N , 9, and 13. For the D-trimmed filter
bank the thresholds are 0.2 and 0.4.

In case of spike absense the D-trimmed, Wilcoxon and
Hodges-Lehman with 5 N  are used as the DPFs. When the
spikes are present the standard median filter ( 5 N ) is used as
DPF. This filter is added to aforementioned filter banks to
provide better robustness of adaptive procedure because the other
DPFs with 5 N  have more poor robust properties than the
standard median filter. The notations Wil+M, H-L+M, D-tr+M
are used for the corresponding adaptive procedures.  

As it can be seen from Table 1 for relatively small values of
2
aV  ( 001.02

 aV ) and 0 impP  the best results (minimal F )

among non-adaptive filters are provided by the DPFs with
5 N . This happens because the influence of dynamic errors for

small 2
aV  is more essential than the influence of residual

fluctuative noise. However, the adaptive procedure guarantees
even smaller adF  value than the MSE value for any non-adaptive

nonlinear filter of the filter bank. For larger 2aV  ( 003.02
 aV )

and 0 impP  the best among the non-adaptive filters are those

ones with 9 N (D-trimmed is the best one). In this case the
adaptive filters also produce better results than the best among
the considered non-adaptive filters.

When the spikes are present the adaptive procedures do not
ensure the adF  less than the best non-adaptive filter. However,

usually the adaptive procedures are superior in comparison with
the two worst non-adaptive algorithms. The difference between

adF  and � �1395 ,,min FFF  is not too large. That is why, in

general, the adaptive filters provide the best results or they
ensure the MSE values quite close to the best for rather wide
variety of additive and impulsive noise characteristics.

The MAE criterion is often used in practice, especially for
characterizing the filter properties in non-gaussian noise
environments. The results of MAE value analysis for different
non-adaptive filters and various adaptive procedures are in good
agreement with the results obtained for MSE criterion. So, the
proposed adaptive procedures are rather effective from different
points of view.
 One more conclusion is that the adF  and adN  values for the

adaptive procedure based on  D-trimmed filters are usually better
than for the other ones. So taking this into account and
comparing the computational efficiency of the component filters
the last variant of adaptive procedure in the Tables seems to be
preferrable for practical implementation.



6. CONCLUSIONS

It is shown that the adaptive procedure based on selection of
nonlinear filter from the bank depending upon Z-parameter value
has a theoretical background and can be optimized. The proposed
adaptive procedure produces good quality of data processing in
case if a priori unknown characteristics of mixed noise varying in
rather wide limits.
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