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ABSTRACT ! m(t) o d®)
This paper presents a method of reducing a sinusoidal dis-jnpyt | u(t) (D) error signal

turbance through a periodic transfer function. First, a pre- i(t) | G(v) | &f)
cise definition of the problem (transfer function and distur- ' PERIODIC TRANSFER FUNCTION |

bance characteristics) is made. A control strategy that min- I =SYNCHRONOUSMACHINE |
imizes a quadratic cost function is next elaborated. Its good

performances are then compared with a classical adaptive
feeforward control method thanks to simulation results. It
attenuate§0% of the disturbance power in simulation. The The transfer function between the input curréit} and the
finality of this work is to decrease the vibrations of an elec- generated vibration(t) can be viewed [5] as an amplitude
trical synchronous machine, and the metheaches &0% modulation followed by a linear time-invariant system. The
attenuation rate on real signals. Implementation of this al- modulation signain(t) is sinusoidal, with frequency,,

Figure 1: Structure of the periodic transfer function

gorithm can then be envisaged. the machine rotating frequency. It can be determined thanks
to an angular sensoraated on the rotor shaft. The invariant
1. INTRODUCTION transfer function, named:(v), represents the mechanical

stator frame transfer. It can be estimated by hammer test
impact. The globally transfer function is thpariodig with
period?,, = % and is supposed to be perfectly known in
the rest of thismpaper. Its structure is shown on figure 1.
Figure 2 represents an example of the alternator’s natural
vibration power spectrum in dB, with a fixed machine ro-
tating frequency,,, = 47.6 Hz. Most part of this signal
power is due to a set of spectral lines, located at harmonic
frequencies of,,,.

Our work originates from an active control problem. It aims
to decrease the vibrations of an electrical synchronous ma
chine. The vibration signal mostly consists of sine waves.
Moreover, the transfer function of this process can be shown
periodic and therefore time-varying. Thus we developed a
method of minimizing the power of a sine wave through a
periodic transfer function. A more precise definition of this
problem is exposed in the next section. This will be fol-
lowed by a theoritical study resulting in two methods : a 70
feedforward control technique, and an optimal control one.
Simulation results exposed in the fourth section allow to 60
choose the second strategy, and finally its performances are .
verified on a real vibration signal.
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2. DEFINITION OF THE PROBLEM
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The problem is to realize an active control system to de-
crease electrical sychronous machine vibrations.

To reach this goal, a stator coil isigplied with a current
i(t). It generates an additional vibration sigrét), which 0 i i i i ; ‘
interacts destructively with the engine’s natural affe). O renueney (g 3000 %000
The sum of these two signals represents the efQr It is

measured with an accelerometer on the stator frame.
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Figure 2: Natural vibration power spectrum example



The whole system transfer function and disturbance char-
acteristics description allows to state the problem in sig-
nal processing wordsfind a method of cancelling a sine
wave with frequency k x v, (k € N) through a periodic
transfer function with frequency v,,.

Two of these methods are exposed in the next section.

3. THEORITICAL STUDY

3.1. Feedforward control with the FXLMS algorithm

The time-varying property of the global transfer function

leads to choose an adaptive method. Besides, feedforward

control technique has been chosen to avoid stability prob-
lem. This structure is often selected in active control of

noise or vibration applications [1] [2] because of its robust-

ness, and its simplicity for digital signal processing imple-

mentation.

3.1.1. Principle

This method is implemented in discrete time. All signals

are then supposed to verify Shannon’s theorem in order to

be correctly discretized. Its principle is detailed on figure 3.
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Figure 3: Principle of the feedforward control method

The error signak(k) is used to update an adaptive filter
W. This filter, fed with a reference signa(k), has to sup-

ply the system with the input4) to minimizee(k) in the
mean square sensél’ converges to an optimal stationary
value only if the signals/(k) andd(k) are, at least, par-
tially correlated. In such a case, only the correlated parts
of these signals can be cancelled:{#). The disturbance
signald(k) is now supposed to be:ig tone signal. Three
unknown quantities have still to be determined:

¢ The adaptive filter architecturd is mostly chosen
as a finite impulse response (FIR) filter for stability
considerations. Therefore, filter coefficients at tilne
are represented as a vectdr;, .

e The reference signat(k). It is chosen as a,
vq4 — vy, tone signal to have a maximum correlation
betweenv(k) andd(k), and a maximum attenuation
of d(k) in the error signal. Because of the sinusoidal
amplitude modulatiory (k) is then composed of two

sine waves with frequencies; andv,; — 2v,,. The

v4 frequency sinusoid is well correlated with the dis-
turbance, and a good attenuation can be expected at
that frequency. The second sinusoid induces a loss of
performance for this method.

The algorithm used to updai€. The filtered-x least
mean square (FXLMS) algorithm, studied in [3] and
[4], is used in this application thanks to its robustness
and simplicity. Equation (1) recalls the filter coeffi-
cients adaptation law.

Wiy = Wy + 2p.e(k) Ry, 1)
w is called the adaptation rate, and the ved®ris
composed of delayed versions of the reference signal
z(k), filtered by the known periodic transfer function
at timek.

3.1.2. Limits

The method’s weak points can be found from this descrip-
tion. The first one is due to the amplitude modulation signal
m(t), which is occasionally null. During these moments,
the global periodic transfer is no more inversible, and no at-
tenuation of the disturbance can then be done. The second
weak point is the generation of an undesired sine wave with
a frequencyy — 2v,, in e(k), which induces a poor atten-
uation rate of the disturbance. This problem is partly due
to the reference signal choice. These observations are illus-
trated by simulation results exposed in the fourth section.
Another control strategy must now be elaborated to avoid
the problem of the undesirable sine wave generation.

3.2. Optimal control

To choose the previous control technique, the time-varying

property of the system has been used. In this section, the
characteristics of this variation are taken into account to in-

crease the performances.

3.2.1. General properties of the signals

The disturbancel(t) is known to be a periodic function,
with frequency components locatedkak v, (k € N). To
reachgood performances,(t) andd(t) have to be strongly
correlated, or similarly they must have the same frequency
range. The periodic transfer frequencyjs, and implies
v, frequency shifts in the input signal spectrum. Therefore,
the optimal input frequency components mustihe har-
monics. From these considerations, we can sayathéte
signals of the system on figure 1 have frequency ranges
limited to the v,,, harmonics, and then can be decom-
posed in Fourier series The Fourier transform of analyt-
ical signals can now be written as dot products of infinite



length vectors. The Fourier transfotfy (v) of the analyti- ~ P;. A cost functionC' consisting of the sum of these two

cal signal ofd(t) is for example given by: power is chosen:
n=+4oo _ & i
Zow)=2x Y dpd(v—nvm)=2xA"D (2 C=75+713 @
n=0

The real constant adjusts the part of the input power in this
where cost function. In the frequency domaifi,can be expressed
thanks to the integral of power spectrumsi(f) ande(t)
analytical signals:

Foo Ze(I/)H.Ze(I/) Foo ZZ'(I/)H.ZZ'(I/)
C:/_Oo — dy—l—'y./ — dv

A=[6dw) d(v—rm) ... (= Nvm) B
D=[dy dy ... dy ...]"

— 00

(7 and” are respectively hermitian and standard transposes)

D is thed(t) Fourier series coefficients vector, aid) rep- ~ Using the following property:

resents the Spike function. +oo

To avoid problems due to infinite length vectors, all signals A" Adv = 14 wherely is the identity matrix
are supposed to have null Fourier coefficients avex v,, —oo - -

Hertz. Vectors are then limited to thelif + 1 first elements.  the cost function is expressed in terms of the disturbance
and input Fourier series coefficients vectors, and the known
3.2.2. Error signal expression system characteristic] andG):

We assume that the signal(t) = A,,. cos(2avmt + ¢m)
and the time-invariant padt(v) of the whole transfer are H
perfectly known. The Fourier transforii. (v) of the an- +I7. {MH,QH.D} + {MH.QH.D} 1
alytical error signal can be expressed as a function of the _|_DH.]:)— o T

input and disturbance Fourier series coefficients vedors - =

andD, and the transfer characteristics: This is a hermitian quadratic form as explained in [1], where

M".G".GM + 7.I_d} is a hermitian matrix. The fisrt
term of this expression is the power of the vibration signal

C= 1" |M"G" GM+714| 1

Zov)=2x A" E=2xA".[GMI+D] (3)

where generated by the input acting alone, summed with the frac-
tionnal part of the input power. The last one is the power of
G(0) 0 the disturbance signal. These two terms are never negative.
G = - The middle one is the cross-power betwet) andd(t).
- 0 ' G(Nvp) Therefore, if these two signals are totally uncorrelated, it's

impossible to minimize the cost functian
This matrix represents the time-invariant filter effect. It is

diagonal lecause of the stationarity of this system. 3.2.4. Optimal input signal
A, ctitm 0 A, e—itm 0 The hermitian quadratic form is known to have a unique
2 2 global minimum if the hermitian matrix is positive definite.
M = . . This condition can here always be realized thankg tohis
0 Apetitm 0 Ape=i?m global minimum is reached with the optimal Fourier series

2 2

coefficients vectol,p¢ Of the input signal:

This matrix represents the amplitude modulation part of the )

system, and is no more diagonal. A signal multiplication by Lpe = — [M?P.GEGM++114)] MY GHYD (6)

a sinusoid is a time-varying process, and involves frequency - - T = -

shifts in the signal spectrum. This explains the shape of thisThis relation gives the Fourier coefficients of the optimal
matrix, easily obtained by computing the Fourier series of input signal, which is then easily determined by an inverse

the signak:(¢) on the figure 1. Fourier transform.
3.2.3. Costfunction 3.2.5. Algorithm
The optimal commané,,., () has to minimize the power. The finality of this work is to implement this method with

of the error signal, with a minimum amount of input power a digital signal processor. The optimal solution, given in



equation (6), contain®, but the only measured signal is
e(t). In order to have a solution as a function of the error
Fourier coefficientsk,), and an adaptive solution instead of
equation (6), a gradient descent algorithm, with a conver-
gence rate, is derived from relation (5):

L, =(1-2m)L - 2uM" G" E, (7)

C has a unique global minimum, so that this algorithm con-
verges to the solution given in (6).

Relation (7) is usually applied at each sample. The adaptive
vectorI generates here a periodic input sigf(@), so that
this vector is updated here once a periedc(nl% seconds).

E, contains the Fourier series coefficients of the error signal
valid for the present period, and is then easily processed.

3.2.6. Limits

According to the reasons exposed in section 3.1.2, no at-
tenuation is expected during cancellation of the modula-
tion signal. The first weak point of the feedforward control
method is then still present.

In counterpart, the mean square optimality of the solution
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allows to hope for better results for the undesired sine waves
generated in the error signal. The attenuation rate, defined
as the ratio between the error power, and the disturbance
one, will then certainly decrease. Moreover, thanks to the
description of the disturbance signal used in this section (its
Fourier series coefficients vecthr), d(¢) can be a periodic
signal which fundamental frequencyfis: v,,,, and notonly  The results obtained with the feedforward strategy are shown
a pure tone signal. on figure 4. The convergence ratejis= 0.01. Figure

In the next section, the results of these two control meth- 4(a) represents the evolution of the input (dashed line) and
ods are compared, and the better one is applied on real roerror (solid line) power versus time. The vertical scale is
tating machine vibration signals. "percentage of disturbance power”. The algorithm needs
800 samples to converge to the minimum value of the error
power, which is about0% of the disturbance one. More-
over, the final input power i830% of the disturbance one.
Figure 4(b) shows the disturbance (dashed line) and error
(solid line) power spectrums after convergence. As expected,
the disturbance spectral line, located 560 Hz, is well at-
tenuated (about 10 dB), but an undesired one is created at

Figure 4: Feedforward control method

4.2. Feedforward control

4. SIMULATION RESULTS

4.1. Simulation characteristics

The simulations, realized to study the two control strategy
elaborated, have some common characteristics.

The modulation signak(¢) is a50 Hz tone signal.

The time-invariant transfer functiafi(v) presents two
resonancesb(0 Hz and1550 Hz), and three zeros
(0 Hz, 1000 Hz and5000 Hz). The same transfer is
modelized, on the one hand, as an ordgrfinite im-

1400 Hz. In the end, this method reaches db attenuation
rate, which is a middling performance.

4.3. Optimal control

Figure 5 has the same arrangement than figure 4. The con-

pulse response (FIR) filter for the feedforward control yergence rate is now = 0.1 and~, defined in equation

method, and on the other hand as an ord@finite

impulse response (lIR) filter for the optimal control

one.

The disturbance signal(t) consists of al500 Hz
tone signal, with a unitary power.

The sampling frequendsy fixed at10000 Hz.

(4) is fixed at0.05. The convergence time is abot00
samples what is much greater than the last one. But this
method reaches to attenuatsoat 90% of the disturbance
power, with a final input power df60%. Power spectra of
figure 5(b) shows that the disturbance spectral line is well
attenuated, and undesired ones, located-at1400 Hz and

v = 1600 Hz are very small compared to the results of the



w
=}
=}

W

s}

S

— — - input power - gir%l#rbanc i
error power = —
250} | = — cost function| [

\
N
a
=)

N
o
S

o
o
S

percentage
P
o
o
N
power spectrum (linear)
.
@
S

50 N
| 1

i i i i 0
0o 20 40 60 80 100 1500 1550 1600 1650 1700 1750 1800
period number real frequency (Hz)

(a) learning curve (percentage of disturbance power) Figure 6: signal spectrums after convergence

0.9—__; ‘g%#rbanc :
| 5. CONCLUSION

m (linear)
o o
~N @

2 ¢
)

i 1 A method of attenuating the power of a sine wave through a
i ] periodic transfer function has been elaborated. It processes
" ] an input signal, minimizing a cost function composed of the
02r e 1 error power and a fractional part of the input power.
°';' . s . ] The comparison of this optimal control strategy with an
120000 0 ey gy 0 adaptive feedforward one brings out its superiority for a
pure tone signal. Furthermore, it can be applied to a pe-
riodic disturbance, with a fundamental frequency equals to
k x v, which is a more general case than the sinusoidal
Figure 5: Optimal control method one.
Finally, its application on real rotating machine vibration
signals reaches at lea®% attenuation rate of the distur-
previous method. Moreover, by choosing different values bance power. The same performances are expected after
for , these results can be modified. For smalery good implementation on a real alternator with a digital signal pro-
attenuation rate can be obtained, to the prejudice of an in-cessor.
creased input power.
These simulations allow to choose the optimal control strat-
egy thanks to its better performancdd (dB attenuation

rate). Itis now applied on real vibration signals. [1] P.A. Nelson S.J. Elliot.”Active control of sound?
1992, Academic Press
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(b) signal spectrums after convergence

6. REFERENCES

4.4. Real signals [2] C.R. Fuller, S.J. Elliot and P.A. NelsotActive control

of vibration”, 1996, Academic Press
The optimal control algorithm defined by equation (7) is ap-

plied to the vibration signal which spectrum is shown on fig- [3] S:-M. Kuo and D.R. MorgarfActive noise control sys-
ure 2. It has been measured on an alternator with a machine te€ms, algorithms and DSP implementatiod996, Wi-
rotating frequency,,, = 47.6 Hz. The stator frame transfer ley interscience

function is simulated with the same IIR filter as previouly.
Only the1666 Hz located spectral line is modified thanks to
a bandpass filter applied to the error signal with a passband
situated betweeh000 Hz and2000 Hz. Figure 6 showsthe  [5] P. Granjon, C. Serviere and A. Foggigontrole actif
disturbance (dashed line) and error (solid line) spectrum af-  des vibrations d’'une machine synchron&998, 3rd I.C.

ter convergence. on acoustical and vibratory surveillance methods and di-
This method’saccuracy is verified. The algorithm reaches agnostic techniques, CETIM Senlis, 1998.

to attenuate more tha% of the spectral line. This result

is not as good as the previous simulation orezduse of the

noise part of the real vibration signal.

The last step is to implement this algorithm in a digital sig-

nal processor to work it up on a real synchronous machine.

[4] S.D. Stearns B. Widrow!Adaptive signal processing”
1985, Prentice-Hall



