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ABSTRACT

This paper presents a method of reducing a sinusoidal dis-
turbance through a periodic transfer function. First, a pre-
cise definition of the problem (transfer function and distur-
bance characteristics) is made. A control strategy that min-
imizes a quadratic cost function is next elaborated. Its good
performances are then compared with a classical adaptive
feeforward control method thanks to simulation results. It
attenuates90% of the disturbance power in simulation. The
finality of this work is to decrease the vibrations of an elec-
trical synchronous machine, and the method reaches a60%
attenuation rate on real signals. Implementation of this al-
gorithm can then be envisaged.

1. INTRODUCTION

Our work originates from an active control problem. It aims
to decrease the vibrations of an electrical synchronous ma-
chine. The vibration signal mostly consists of sine waves.
Moreover, the transfer function of this process can be shown
periodic, and therefore time-varying. Thus we developed a
method of minimizing the power of a sine wave through a
periodic transfer function. A more precise definition of this
problem is exposed in the next section. This will be fol-
lowed by a theoritical study resulting in two methods : a
feedforward control technique, and an optimal control one.
Simulation results exposed in the fourth section allow to
choose the second strategy, and finally its performances are
verified on a real vibration signal.

2. DEFINITION OF THE PROBLEM

The problem is to realize an active control system to de-
crease electrical sychronous machine vibrations.
To reach this goal, a stator coil is supplied with a current
i(t). It generates an additional vibration signalv(t), which
interacts destructively with the engine’s natural oned(t).
The sum of these two signals represents the errore(t). It is
measured with an accelerometer on the stator frame.
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Figure 1: Structure of the periodic transfer function

The transfer function between the input currenti(t) and the
generated vibrationv(t) can be viewed [5] as an amplitude
modulation followed by a linear time-invariant system. The
modulation signalm(t) is sinusoidal, with frequency�m,
the machine rotating frequency. It can be determined thanks
to an angular sensor placed on the rotor shaft. The invariant
transfer function, namedG(�), represents the mechanical
stator frame transfer. It can be estimated by hammer test
impact. The globally transfer function is thenperiodic, with
periodTm = 1

�m
, and is supposed to be perfectly known in

the rest of this paper. Its structure is shown on figure 1.
Figure 2 represents an example of the alternator’s natural
vibration power spectrum in dB, with a fixed machine ro-
tating frequency�m = 47:6 Hz. Most part of this signal
power is due to a set of spectral lines, located at harmonic
frequencies of�m.
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Figure 2: Natural vibration power spectrum example



The whole system transfer function and disturbance char-
acteristics description allows to state the problem in sig-
nal processing words :find a method of cancelling a sine
wave with frequencyk � �m (k 2 N) through a periodic
transfer function with frequency �m.
Two of these methods are exposed in the next section.

3. THEORITICAL STUDY

3.1. Feedforward control with the FxLMS algorithm

The time-varying property of the global transfer function
leads to choose an adaptive method. Besides, feedforward
control technique has been chosen to avoid stability prob-
lem. This structure is often selected in active control of
noise or vibration applications [1] [2] because of its robust-
ness, and its simplicity for digital signal processing imple-
mentation.

3.1.1. Principle

This method is implemented in discrete time. All signals
are then supposed to verify Shannon’s theorem in order to
be correctly discretized. Its principle is detailed on figure 3.

v(k)
x(k)

e(k)

d(k)

transfer function
global periodicadaptive i(k)

filter
W

Figure 3: Principle of the feedforward control method

The error signale(k) is used to update an adaptive filter
W . This filter, fed with a reference signalx(k), has to sup-
ply the system with the inputi(k) to minimizee(k) in the
mean square sense.W converges to an optimal stationary
value only if the signalsv(k) and d(k) are, at least, par-
tially correlated. In such a case, only the correlated parts
of these signals can be cancelled ine(k). The disturbance
signald(k) is now supposed to be a�d tone signal. Three
unknown quantities have still to be determined:

� The adaptive filter architecture. W is mostly chosen
as a finite impulse response (FIR) filter for stability
considerations. Therefore, filter coefficients at timek

are represented as a vector:W k.

� The reference signalx(k). It is chosen as a�x =
�d � �m tone signal to have a maximum correlation
betweenv(k) andd(k), and a maximum attenuation
of d(k) in the error signal. Because of the sinusoidal
amplitude modulation,v(k) is then composed of two

sine waves with frequencies�d and�d � 2�m. The
�d frequency sinusoid is well correlated with the dis-
turbance, and a good attenuation can be expected at
that frequency. The second sinusoid induces a loss of
performance for this method.

� The algorithm used to updateW . The filtered-x least
mean square (FxLMS) algorithm, studied in [3] and
[4], is used in this application thanks to its robustness
and simplicity. Equation (1) recalls the filter coeffi-
cients adaptation law.

W k+1 = W k + 2�:e(k):Rk (1)

� is called the adaptation rate, and the vectorRk is
composed of delayed versions of the reference signal
x(k), filtered by the known periodic transfer function
at timek.

3.1.2. Limits

The method’s weak points can be found from this descrip-
tion. The first one is due to the amplitude modulation signal
m(t), which is occasionally null. During these moments,
the global periodic transfer is no more inversible, and no at-
tenuation of the disturbance can then be done. The second
weak point is the generation of an undesired sine wave with
a frequency�d � 2�m in e(k), which induces a poor atten-
uation rate of the disturbance. This problem is partly due
to the reference signal choice. These observations are illus-
trated by simulation results exposed in the fourth section.
Another control strategy must now be elaborated to avoid
the problem of the undesirable sine wave generation.

3.2. Optimal control

To choose the previous control technique, the time-varying
property of the system has been used. In this section, the
characteristics of this variation are taken into account to in-
crease the performances.

3.2.1. General properties of the signals

The disturbanced(t) is known to be a periodic function,
with frequency components located atk � �m (k 2 N). To
reachgood performances,v(t) andd(t) have to be strongly
correlated, or similarly they must have the same frequency
range. The periodic transfer frequency is�m, and implies
�m frequency shifts in the input signal spectrum. Therefore,
the optimal input frequency components must be�m har-
monics. From these considerations, we can say thatall the
signals of the system on figure 1 have frequency ranges
limited to the �m harmonics, and then can be decom-
posed in Fourier series. The Fourier transform of analyt-
ical signals can now be written as dot products of infinite



length vectors. The Fourier transformZd(�) of the analyti-
cal signal ofd(t) is for example given by:

Zd(�) = 2�
n=+1X
n=0

dn�(� � n�m) = 2��H :D (2)

where

� =
�
�(�) �(� � �m) : : : �(� � N�m) : : :

�T
D =

�
d0 d1 : : : dN : : :

�T

( H andT are respectively hermitian and standard transposes)
D is thed(t) Fourier series coefficients vector, and�(�) rep-
resents the Spike function.
To avoid problems due to infinite length vectors, all signals
are supposed to have null Fourier coefficients overN � �m
Hertz. Vectors are then limited to theirN +1 first elements.

3.2.2. Error signal expression

We assume that the signalm(t) = Am: cos(2��mt + �m)
and the time-invariant partG(�) of the whole transfer are
perfectly known. The Fourier transformZe(�) of the an-
alytical error signal can be expressed as a function of the
input and disturbance Fourier series coefficients vectorsI

andD, and the transfer characteristics:

Ze(�) = 2��H :E = 2��H :
�
G:M:I+D

�
(3)

where
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This matrix represents the time-invariant filter effect. It is
diagonal because of the stationarity of this system.
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This matrix represents the amplitude modulation part of the
system, and is no more diagonal. A signal multiplication by
a sinusoid is a time-varying process, and involves frequency
shifts in the signal spectrum. This explains the shape of this
matrix, easily obtained by computing the Fourier series of
the signalu(t) on the figure 1.

3.2.3. Cost function

The optimal commandiopt(t) has to minimize the powerPe
of the error signal, with a minimum amount of input power

Pi. A cost functionC consisting of the sum of these two
power is chosen:

C =
Pe

2
+ :

Pi

2
(4)

The real constant adjusts the part of the input power in this
cost function. In the frequency domain,C can be expressed
thanks to the integral of power spectrums ofi(t) ande(t)
analytical signals:

C =

Z +1

�1

Ze(�)H :Ze(�)

4
d� + :

Z +1

�1

Zi(�)H :Zi(�)

4
d�

Using the following property:
Z +1

�1

�H :�d� = Id whereId is the identity matrix

the cost function is expressed in terms of the disturbance
and input Fourier series coefficients vectors, and the known
system characteristics (M andG):

C = I
H :
h
M

H :GH :G:M+ :Id

i
:I

+IH :
h
M

H :GH :D
i
+
h
M

H :GH :D
iH

:I

+DH :D

(5)

This is a hermitian quadratic form as explained in [1], whereh
M

H :GH :G:M+ :Id

i
is a hermitian matrix. The fisrt

term of this expression is the power of the vibration signal
generated by the input acting alone, summed with the frac-
tionnal part of the input power. The last one is the power of
the disturbance signal. These two terms are never negative.
The middle one is the cross-power betweenv(t) andd(t).
Therefore, if these two signals are totally uncorrelated, it’s
impossible to minimize the cost functionC.

3.2.4. Optimal input signal

The hermitian quadratic form is known to have a unique
global minimum if the hermitian matrix is positive definite.
This condition can here always be realized thanks to. This
global minimum is reached with the optimal Fourier series
coefficients vectorIopt of the input signal:

Iopt = �

h
M

H :GH :G:M+ :Id

i
�1

:MH :GH :D (6)

This relation gives the Fourier coefficients of the optimal
input signal, which is then easily determined by an inverse
Fourier transform.

3.2.5. Algorithm

The finality of this work is to implement this method with
a digital signal processor. The optimal solution, given in



equation (6), containsD, but the only measured signal is
e(t). In order to have a solution as a function of the error
Fourier coefficients (E), and an adaptive solution instead of
equation (6), a gradient descent algorithm, with a conver-
gence rate�, is derived from relation (5):

Il+1 = (1 � 2�)Il � 2�MH :GH :El (7)

C has a unique global minimum, so that this algorithm con-
verges to the solution given in (6).
Relation (7) is usually applied at each sample. The adaptive
vectorI generates here a periodic input signali(t), so that
this vector is updated here once a period (each 1

�m
seconds).

El contains the Fourier series coefficients of the error signal
valid for the present period, and is then easily processed.

3.2.6. Limits

According to the reasons exposed in section 3.1.2, no at-
tenuation is expected during cancellation of the modula-
tion signal. The first weak point of the feedforward control
method is then still present.
In counterpart, the mean square optimality of the solution
allows to hope for better results for the undesired sine waves
generated in the error signal. The attenuation rate, defined
as the ratio between the error power, and the disturbance
one, will then certainly decrease. Moreover, thanks to the
description of the disturbance signal used in this section (its
Fourier series coefficients vectorD), d(t) can be a periodic
signal which fundamental frequency isk��m, and not only
a pure tone signal.

In the next section, the results of these two control meth-
ods are compared, and the better one is applied on real ro-
tating machine vibration signals.

4. SIMULATION RESULTS

4.1. Simulation characteristics

The simulations, realized to study the two control strategy
elaborated, have some common characteristics.

� The modulation signalm(t) is a50 Hz tone signal.

� The time-invariant transfer functionG(�) presents two
resonances (500 Hz and1550 Hz), and three zeros
(0 Hz, 1000 Hz and5000 Hz). The same transfer is
modelized, on the one hand, as an order100 finite im-
pulse response (FIR) filter for the feedforward control
method, and on the other hand as an order4 infinite
impulse response (IIR) filter for the optimal control
one.

� The disturbance signald(t) consists of a1500 Hz
tone signal, with a unitary power.

� The sampling frequencyis fixed at10000 Hz.
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Figure 4: Feedforward control method

4.2. Feedforward control

The results obtained with the feedforward strategy are shown
on figure 4. The convergence rate is� = 0:01. Figure
4(a) represents the evolution of the input (dashed line) and
error (solid line) power versus time. The vertical scale is
”percentage of disturbance power”. The algorithm needs
800 samples to converge to the minimum value of the error
power, which is about40% of the disturbance one. More-
over, the final input power is330% of the disturbance one.
Figure 4(b) shows the disturbance (dashed line) and error
(solid line) power spectrums after convergence. As expected,
the disturbance spectral line, located at1500 Hz, is well at-
tenuated (about�10 dB), but an undesired one is created at
1400 Hz. In the end, this method reaches a4 db attenuation
rate, which is a middling performance.

4.3. Optimal control

Figure 5 has the same arrangement than figure 4. The con-
vergence rate is now� = 0:1 and, defined in equation
(4) is fixed at0:05. The convergence time is about4000
samples what is much greater than the last one. But this
method reaches to attenuate about 90% of the disturbance
power, with a final input power of260%. Power spectra of
figure 5(b) shows that the disturbance spectral line is well
attenuated, and undesired ones, located at� = 1400 Hz and
� = 1600 Hz are very small compared to the results of the
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Figure 5: Optimal control method

previous method. Moreover, by choosing different values
for , these results can be modified. For small, very good
attenuation rate can be obtained, to the prejudice of an in-
creased input power.
These simulations allow to choose the optimal control strat-
egy thanks to its better performances (10 dB attenuation
rate). It is now applied on real vibration signals.

4.4. Real signals

The optimal control algorithm defined by equation (7) is ap-
plied to the vibration signal which spectrum is shown on fig-
ure 2. It has been measured on an alternator with a machine
rotating frequency�m = 47:6 Hz. The stator frame transfer
function is simulated with the same IIR filter as previouly.
Only the1666Hz located spectral line is modified thanks to
a bandpass filter applied to the error signal with a passband
situated between1000 Hz and2000 Hz. Figure 6 shows the
disturbance (dashed line) and error (solid line) spectrum af-
ter convergence.
This method’saccuracy is verified. The algorithm reaches
to attenuate more than60% of the spectral line. This result
is not as good as the previous simulation one, because of the
noise part of the real vibration signal.
The last step is to implement this algorithm in a digital sig-

nal processor to work it up on a real synchronous machine.
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Figure 6: signal spectrums after convergence

5. CONCLUSION

A method of attenuating the power of a sine wave through a
periodic transfer function has been elaborated. It processes
an input signal, minimizing a cost function composed of the
error power and a fractional part of the input power.
The comparison of this optimal control strategy with an
adaptive feedforward one brings out its superiority for a
pure tone signal. Furthermore, it can be applied to a pe-
riodic disturbance, with a fundamental frequency equals to
k � �m, which is a more general case than the sinusoidal
one.
Finally, its application on real rotating machine vibration
signals reaches at least60% attenuation rate of the distur-
bance power. The same performances are expected after
implementation on a real alternator with a digital signal pro-
cessor.
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