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ABSTRACT

We consider the problem of smoothing or estimating
data which does not possess any numerical ordering
properties. We propose a graph-based estimation method
that does not rely on linear ordering of the data. The
method is similar to Ly-norm estimates, such as the
median and mean operations, and can be used to cor-
rect misclassifications. As an application, we consider
the problem of determining the localized tonal context
in a musical composition.

1. INTRODUCTION

Nonlinear digital filters have been successfully used for
solving many types of problems in signal and image
processing, especially in situations where linear filters
are inappropriate. A large subclass of nonlinear filters
that has been the focus of much attention is the class of
filters based on order statistics [1]. This class includes
median-related filters such as rank-order filters, order
statistic filters, weighted median filters, stack filters,
and morphological filters. Good overviews of these top-
ics can be found in [2] and [3]. One property common
to all such filtering schemes is that they inherently de-
pend on some ordering of the data to be filtered. That
is, a numerical ordering is intrinsic to the amplitude of
one-dimensional signals or pixel values of images. How-
ever, some types of data may not possess any ordering
property in that its constituents arise from what we
will refer to generally as “classes.” Such data will be
referred to as “class data.” An example of class data
is an image in which every pixel is classified in one of a
finite number of classes and is visually represented by
some color. Such images can arise, for example, from
classification of hyperspectral sensor data. The color
itself is only symbolic in that it is used to represent
the class (i.e. grass can be green, water can be blue,
etc.). Naturally, the notion of “outlier” necessarily be-
comes somewhat vague as we have no recourse to any
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numerical information. Thus, outliers can be thought
of simply as misclassifications.

Nevertheless, we may wish to process a sequence of
class data with the goal of removing such outliers or
misclassifications by utilizing the information in their
neighborhood. After all, it is natural to expect that
in many situations, neighboring pixels or signal values
contain information about a central pixel or value. For
example, if one pixel of grass is surrounded only by
water pixels, it is possibly a misclassification and can
be corrected. This serves as part of the motivation
of this work. Specifically, we propose a new method of
smoothing or estimating class data using a graph-based
Lp-norm estimate. Furthermore, our method can incor-
porate distances between classes; that is, some classes
may be more likely to be found in close proximity to
each other than others. For example, grass may be
more likely to be found close to water than roofs of
buildings.

As an application of the proposed method, we con-
sider the problem of determining the localized tonal
context in a musical composition. The goal here is to
trace varying tonal orientations as well as modulations
in a reliable fashion. Our method is essentially based
on a key finding algorithm developed by Krumhansl [4]
which is applied in a sliding window fashion. Unfor-
tunately, in practice, there is quite a bit of variation
in certain regions of the sequence of key assignments.
This is due to the algorithm’s sensitivity to the dis-
tribution of pitches within the window and is a man-
ifestation of the well known uncertainty principle. If
the width of the window is made too large, the ar-
tifacts are suppressed, but the detection accuracy is
sacrificed. On the other hand, smaller windows give
rise to impulses and oscillations in the sequence of key
assignments, while accuracy of detecting modulations
may be improved. Therefore, the preferable action is
to smooth out the local oscillations and to remove im-
pulses by utilizing neighboring key assignments.

As a solution to this problem, various nonlinear fil-



ters, such as the recursive median filter have been em-
ployed [5]. As explained above, the difficulty with using
such filters is due to the class quality of the input data.
That is, there is no natural ordering of the tonal con-
texts. Addressing this problem, we apply the proposed
graph-based method.

2. DEFINITIONS

Consider a complete undirected weighted graph G (V, E)
with vertex set V, edge set F and a weight function
w:V xV — R. Let us suppose that w (v,v) = 0 for
all v € V. In the case of real numbers, it is well known
that the median of (X3, Xs,...,X,), X; € R, is the
value  minimizing
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So,
med{ Xy, Xo,...,X,} =ar min X; —
{X1, X2 } gﬁe{Xl,...,X,,,};| gl
(1)
Similarly,

mean {X1, Xp,... , X,} = argmin »_(X; —B)> (2)
e
where (3 does not necessarily belong to { X1, X5, ..
Suppose now that we have some set of samples A =
{(Vi,Va,... ,Vi}, Vi € V of graph G. In a similar man-
ner to (1) and (2), we can define
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graph-p (4) = arg glelg;w (Vi, B) (3)

to be the graph-based Lj,-norm estimate. The values
of p =1 and 2 correspond to graph-based median and
mean, respectively. Note that the estimate is necessar-
ily one of the vertices under consideration. Also, as the
following example illustrates, vertices may be repeated;
that is, it is possible that V; = V; for 1 <i < j <n.

Example 1 Consider the graph shown in Figure 1.
Suppose that the contents of our window are

A= {U17v17v37v57v2}

Let us compute graph-1(A). The sum of the weights
from vy to vy, vs,v5, and vy is 9 (recall that w (vy,v1) =
0). The sum of the weights from vs to vy, vy, vs, and vy
is 16. The corresponding sums of the weights from vs
and vy are 17 and 19 respectively. Therefore, since the
sum of the weights is smallest from vy, graph-1(A) =
V1.

Xt

Figure 1: An example of a weighted graph. Weights
are shown on edges.

Similarly to the running mean and median filters,
we can define a sliding window filtering operation based
on (3) as

}/i = graph—p (Xifn’u - 7Xi7 . 7Xi+7n) (4)
where {X}} is the sequence of input class data and
{Y}} is the sequence of output class data, with 2m + 1
being the window width.

Finally, in certain situations, we may not have a
complete graph at our disposal. In that case, we can
construct a complete graph as follows. Suppose G (V, E)
is not a complete graph. For any pair of vertices vy, vo €
V such that (vi,v2) ¢ E, we compute the shortest
distance d(vy,v2) from vy to vy and create an edge
e = (v1,v2) with weight w (vy,v2) = d(vy,v2). If vy
and vy are not connected in G, then w (vy,ve) = co.

3. APPLICATION TO KEY FINDING

As an application of the proposed approach, we con-
sider the problem of determining the localized tonal
context in a musical composition. The need for such an
algorithm arises from a system for machine recognition
of music patterns proposed in [6]. An important com-
ponent of this system consists of determining a pitch
error between a target (query) pattern and a scanned
pattern from a music database. The pitch error con-
sists of two parts: an objective or absolute component
and a perceptual component. We focus on the latter
and briefly review the necessary background.



3.1. A Key Finding Algorithm for Music Pat-
tern Recognition

Performing classification based solely on the objective
pitch error would not take into account the fact that
intervals of equal size are not perceived as being equal
when the tones are heard in tonal contexts [7]. Since
the ultimate goal is to recognize a target pattern mem-
orized (possibly incorrectly) by a human being, it is im-
portant to consider certain principles of melody memo-
rization and recall. For example, findings showed that
“less stable elements tended to be poorly remembered
and frequently confused with more stable elements.”
Also, when an unstable element was introduced into
a tonal sequence, * the unstable element was it-
self poorly remembered” [4]. So, the occurrence of an
unstable interval within a given tonal context (e.g., a
melody ending in the tones C Cf in the C major con-
text) should be penalized more than a stable interval
(e.g., B C in the C major context) since the unsta-
ble interval is less likely to have been memorized by
the human user. These perceptual phenomena must
be quantified for them to be useful in the classification
of musical patterns. Such a quantification is provided
by the relatedness ratings found by Krumhansl [4]. Es-
sentially, a relatedness rating between tone g; and tone
g2 (@1 # qo) is a measure of how well ¢y follows ¢; in
a given tonal context. The relatedness rating is a real
number between 1 and 7 and is determined by exper-
iments with human listeners. Results are provided for
both major and minor contexts. So, a relatedness rat-
ing between two different tones in any of 24 possible
tonal contexts can be found due to invariance under
transposition.

To this end, suppose we are scanning a sequence of
n notes to which we compare a target pattern consist-
ing of n notes. For the moment, assuming knowledge
of the tonal context of the scanned pattern, we define
its vector of relatedness ratings o = [ag, g, -+, 1]
as well as 3 = [61,,82, e aﬂnq]: the vector of relat-
edness ratings for the target pattern in the same tonal
context. Each «; and (3; is the relatedness rating be-
tween pitches ¢; and ¢;41 in the given tonal context
for the scanned and target patterns respectively. Hav-
ing defined the vectors of relatedness ratings for the
scanned and target patterns, we can define the percep-
tual pitch error to be e, = ||a — §]|;.

We have assumed that in the computation of the
perceptual pitch error, we had knowledge of the tonal
context of the scanned pattern. Thus, the need arises
for a localized key finding algorithm which will present
us with a most likely tonal context for a given mu-
sical pattern which will be subsequently used for the
relatedness rating vectors. Such an algorithm was de-

veloped by Krumhansl [4] and is essentially based on
the fact that “most stable pitch classes should occur
most often” [8].

The algorithm produces a 24-element vector of cor-
relations, r = [ry,- - ,ra4], the first twelve for major
contexts and the others for minor contexts. The high-
est correlation, 7.,.x, 1S the one that corresponds to
the most likely tonal context of the musical pattern
being scanned. Suppose a musical composition (or set
of compositions) that we wish to scan for the purpose
of recognizing the target pattern consists of m notes
and the target pattern itself consists of n notes (typi-
cally, m > n). In our algorithm, we slide a window
of length n across the sequence of m notes and for
each window position, the key-finding algorithm out-
puts a key assignment. Thus, we have a sequence
t = [t1,t2,- ,tm_n+1] of key assignments such that
t; = argmax (r;). Figure 2 shows a typical sequence of
key assignments.

Figure 2: Typical sequence of key assignments. Since
there is no natural ordering of tonal contexts, they are
arbitrarily ordered for the purpose of visualization.

Unfortunately, in practice, there is quite a bit of
variation in certain regions of the sequence of key as-
signments. Common artifacts are impulses and oscil-
lations between modulations (edges). This is due to
the algorithm’s sensitivity to the distribution of pitches
within the window. These small oscillations and im-
pulses are undesirable, not only because they do not
reflect our notions of modulations and localized tonal
context, but primarily because they affect the relat-
edness rating vectors, which inherently depend on the
tonal context produced by the key-finding algorithm.



Since the values of the assigned key sequence often ap-
pears arbitrary in the regions of oscillation, the percep-
tual pitch error is distorted in these regions. Therefore,
the preferable action is to smooth out those local oscil-
lations. As a solution to this problem, various nonlin-
ear filters, such as the recursive median filter, have been
employed [5]. As mentioned above, the problem with
using such methods is that there is no natural total or-
dering of the tonal contexts. Thus, we see the need for
an approach which doesn’t depend on any ordering of
the data.

3.2. Multidimensional Scaling and Graph-based
Smoothing

At this point, the application of the proposed graph-
based smoothing method seems straightforward. Each
of the 24 tonal contexts (12 major and 12 minor) is rep-
resented by a vertex on a graph. However, the weights
of the edges must represent interkey distances. In [9],
correlations between so-called key profiles were used as
a measure of interkey distances. A high correlation cor-
responded to a high degree of similarity between two
keys while a low or negative correlation corresponded
to a low degree of similarity. Then, the correlations
were used to produce a spatial representation of dis-
tances between keys by using multidimensional scaling
[10]. These resulting key distances provide a quantita-
tive measure of similarity between all 24 tonal contexts.

The method transforms similarity values into a spa-
tial representation of points in Euclidean space. The
set of similarity values input to the multidimensional
scaling program describes the degree of similarity or
relatedness between all possible pairs of objects. The
output of the multidimensional scaling program is a
set of Euclidean coordinates for each of the tonal con-
texts. To objects which have high similarity values cor-
respond to points which are close to each other in the
coordinates space. The scaling program also provides
a measure, called stress, that specifies how well the
resulting configuration fits the similarity values. This
stress value determines the number of necessary dimen-
sions; as the number of dimensions increases, the stress
value decreases. In this case, a four dimensional solu-
tion was found [4]. Two dimensions account for the
circle of fifths while the other two account for paral-
lel and relative major-minor relationships. Thus, the
Euclidean distances in the spatial configuration in four
dimensions represent interkey distances.

Now, we can set the weights of the edges to be dis-
tances from the multidimensional scaling solution. For
example, the coordinate of C major is

[0.567, —0.633, —0.208, 0.480]
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Figure 3: Graph-based Li-norm estimates of key as-
signments

and the coordinate of A minor is
[0.206,—0.781, —0.580, 0.119]

Then, the Euclidean distance between these two keys is
0.6488, which is equal to the weight of the edge between
those two vertices. Consider the following example.

Example 2 Suppose that our window contains the fol-
lowing five key assignments: [C magjor; C magjor; C#
magjor; C magjor, A minor]. We estimate the key as-
stgnment using the graph-based Li-norm estimate, that
is, graph-1(-). For each of the five keys, we compute
and sum the distances to the other four keys. In order,
they are

[2.4491,2.4491,7.0923, 2.4491, 3.6377]

Then, we pick the key which had the minimum total
distance to the rest of the vertices. In this case, the
estimated key is C major.

The weights of the edges, or equivalently, interkey
distances actually serve as additional factors contribut-
ing to the robustness of the estimation method. The
estimator effectively takes into account the proximity
of different classes. A class that has a high edge weights
(distances) to the rest of the classes under considera-
tion has a much lower chance of being selected than
its neighbors. Figure 3 shows the application of this
method in a sliding window fashion, as in equation (4),
to the sequence of key-assignments shown in Figure 2.
The window width in this case was equal to 37.



4. CONCLUSIONS

We have proposed a new method for smoothing or esti-
mating class data, which is data that does not possess
any intrinsic ordering. This method can be used to
correct misclassifications and was demonstrated by ap-
plying it to a problem of determining the localized tonal
context in a musical composition. One of the advan-
tages of this method is that it allows one to incorporate
a measure of closeness or proximity between classes.

As part of future work, several generalizations can
be studied. For example, the graph can be generalized
to be a directed graph and therefore, distances need
not be symmetric. Also, the method should be applied
to classification problems, such as to images of hyper-
spectral sensor data.
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