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ABSTRACT

A novel DCT-domain watermark extraction procedure for still im-
ages that does not require the original image is presented. This
method is based on the generalized Gaussian model, which in-
cludes as a special case the cross-correlation-based watermark de-
tector structures, used so far in the literature. Optimal maximum
likelihood (ML) structures are given, which allow to analytically
assess the performance of watermarking methods in the DCT do-
main within a statistical framework. These original theoretical re-
sults are validated with experiments that show a considerable im-
provement over the existing watermark extraction techniques. The
perceptual model used in the tests is also described.

1. INTRODUCTION

In recent years we have witnessed a striking proliferation of tech-
niques for representation, storage and distribution of digital mul-
timedia information. Unfortunately, these developments have also
opened the gate to unathorized copying, distribution and manip-
ulation of data, mostly images. Specialized and costly hardware
may alleviate the problem of images duplication, at the price of a
dramatic reduction in marketing possibilities –this is the crypto-
graphic approach taken by pay TV channels, not foreseeable for
scenarios such as Internet–. Watermarking techniques can at least
ensure that ownership information is invisibly embedded into the
image, thus preventing or deterring users from illegal uses.

Although many watermarking methods have sprouted over the
few past years, even with commercial products available, the re-
sults up to date are quite discouraging, since there are freely avail-
able programs (e.g., unZign, Stirmark) that have succeeded in wip-
ing the watermark away with little impact on the quality of the re-
sulting image. Parallel to this, the lack of theoretical analyses in
most of the available literature makes it difficult to know the actual
limits in the performance of the various methods and to provide
well-founded solutions which are the only way to eventually turn
digital copyright protection into a mature discipline. In this paper
we make a contribution in this direction by showing how water-
marking in the DCT domain (the most commonly used) can be
dramatically improved by carefully modeling the problem and de-
signing the proper watermark detector. We will assume throughout
the paper that the original image is not known. While knowledge
of the original image greatly simplifies the extraction procedure
[1] it also narrows the range of possible applications.

Let x[n] be a two-dimensional sequence representing the lu-
minance of the original image, wheren = (n1; n2). For the sake
of readability, we will use in the sequel this vector notation to rep-
resent two-dimensional discrete indexes. LetX[k] be the result
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of applying a DCT transform tox[n] in a 8 � 8 pixels block ba-
sis. For copyright protection purposes, a watermarkW [k] car-
rying some hidden information (owner and image identification
number, transaction date, etc.) is added to the original image in
the DCT domain, obtaining as a result the watermarked version

Y [k]
4

= X[k] +W [k].
In the watermarking technique we analyze in this paper, the

watermarkW [k] is generated in the DCT domain employing a 2-
dimensional multipulse amplitude modulation scheme [2, 3]. In
other words,W [k] can be expressed as the sum ofN orthogonal
pulsesfPi[k]gNi=1

W [k] =
NX
i=1

biPi[k]; (1)

where the coefficientsb
4

= (b1; : : : ; bN) are used to encode the
hidden message. The modulation pulsesfPi[k]gNi=1 are gener-
ated as a function of a secret keyK, only known by the copyright
owner. They are expressed as

Pi[k] =

�
�[k]s[k]; k 2 Si
0; otherwise;

(2)

wheres[k] is a key-dependent pseudorandom sequence such that

s[k] 2 f�1; 1g; 8k, and the sets of indexesT 4

= fSigNi=1 are also
key-dependent and determine the spatial shape of the pulses. The
sequence�[k] is called theperceptual maskand indicates the max-
imum allowable magnitude of the alteration that the coefficient
X[k] may suffer without achieving noticeable distortions. The sets
fSigNi=1 are assumed to be non-overlapping, i.e.Si\Sj = ;; 8i 6=
j, and sparsely spread over the whole image in a pseudorandom
fashion to provide security and robustness against cropping [2, 3].

Given a watermarked imageY [k] and the secret keyK, first
the presence of a watermark for that key is tried to be detected
in the so-calledwatermark detection test. If the result is positive,
then thewatermark decodingprocedure obtains an estimate of the
messageb. We will assume in this paper that no attacks aimed at
desynchronizing the watermark are performed. However, both the
synchronization and watermark detection problems can be tackled
within the statistical framework presented in sections 2 to 4. The
perceptual model used in our particular watermarking scheme is
given in Section 5. Section 6 is devoted to experimental results,
while Section 7 presents our conclusions and future lines of re-
search.

2. STATISTICAL MODEL

Detector structures usually proposed for hidden information de-
coding in DCT-domain spread spectrum data hiding techniques
are based on the crosscorrelation between the watermarked image



Y [k] and the pseudorandom sequences[k]. This scheme would
be appropriate if noise –in watermarking, the original image– fol-
lowed a Gaussian distribution. However, the Gaussian assumption
is inaccurate for DCT coefficients of common images. Some au-
thors have proposed the generalized Gaussian probability density
function (pdf)

fx(x) = A e�j� xj
c

: (3)

as an alternative leading to improved statistical models [4]. Note
that the Gaussian and the Laplacian pdf’s are just special cases of
this expression, given byc = 2 and c = 1, respectively. Pre-
vious works in this field show that DCT coefficients at low fre-
quencies are reasonably well-modeled by a generalized Gaussian
distribution with c = 1=2. Coefficients at high frequencies are
better approximated by a Gaussian distribution and sometimes by
a Laplacian distribution.

The parametersA and� in Eq. (3) can be expressed as

� =
1

�

�
�(3=c)

�(1=c)

�1=2

; A =
� c

2�(1=c)
; (4)

where� is the standard deviation. Hence, the pdf is completely
specified byc and�. Let us define the sequence

Ci;j [k1; k2]
4

= X[8k1 + i; 8k2 + j]; i; j 2 f0; : : : ; 7g;
which results if we take the(i; j)-th DCT coefficient of every
block. We will model each of these 64 sequences as the output
of a two-dimensional i.i.d. random process whose marginal distri-
bution follows Eq. (3), with parametersc(i; j) and�(i; j). Let us
also define the sequencesc[k] as

c[k]
4

= c(k1 mod 8; k2 mod 8)

and�[k] in a similar fashion. Thus, these two sequences indicate
the parametersc and� associated with each sampleX[k].

3. WATERMARK DECODER

Let us assume thatM possible different messages can be encoded
with the vectorb = (b1; � � � ; bN) and letbl; l 2 f1; � � � ;Mg
denote the codeword associated to one of those messages. Also,
letWl[k]; l 2 f1; : : : ;Mg be the watermark obtained frombl =
(bl;1; : : : ; bl;N) using Eq. (1). Then, assuming the i.i.d. general-
ized Gaussian model forX[k], it can be easily shown that the op-
timum decoder in the ML sense is the one that chooses the index
l 2 f1; : : : ;Mg verifying

X
k

jY [k]�Wm[k]jc[k] � jY [k]�Wl[k]jc[k]
�[k]c[k]

> 0; 8 m 6= l:

Assuming thatbl;i 2 f�1; 1g; 8l 2 f1; : : : ;Mg; i 2 f1; : : : ; Ng,
this optimization problem is equivalent to finding the codewordbl

which maximizes the expression
PN

i=1 bl;i ri; where the coeffi-
cientsri are sufficient statistics for the detection problem and are
defined as

ri
4

=
X
k2Si

jY [k] + �[k]s[k]jc[k] � jY [k]� �[k]s[k]jc[k]
�[k]c[k]

:

When a binary antipodal constellation is used to encodeM = 2N

possible messages, the ML detector structure is equivalent to a bit-
by-bit hard decisor, so the outputs of the decoder are

b̂i = sgn(ri); i 2 f1; : : : ; Ng:
Now let us analyze the performance of the watermark decod-

ing process in terms of theprobability of bit errorPb. Obviously,
performance results strongly depend on image characteristics, so
we will obtainPb conditioned to a given original imageX[k] or, in
other words, the probability of getting a bit error when a secret key
is taken at random and is applied in both the watermarking and de-
coding processes. In this context,X[k] will be regarded as a deter-
ministic signal while the sequences[k] and the setsT = fSigNi=1

will be modeled statistically.
If the pseudorandom sequences[n] is modeled as an i.i.d. two-

dimensional random process with marginal pdffs(s), then, each
sufficient statisticri is the sum ofjSij statistically independent
contributions (jSij is the cardinality of the setfk; Pi[k] 6= 0g).

Hence, by central limit theorem arguments,r
4

= (r1; : : : ; rN)
can be accurately approximated as the output of a vector Gaussian
channel. Therefore, the probability of error conditioned toX[k]
can be expressed as a function of the first and second order mo-
ments ofr1; : : : ; rN . Let us define the two-dimensional sequence

r[k]
4

= jY [k] + �[k]s[k]jc[k] � jY [k] � �[k]s[k]jc[k];
extracted from Eq. (3).

If the tiling generation process is such that each indexk 2 N2
belongs toSi with probability 1=N for all i 2 f1; : : : ; Ng and
assignments of indices to sets are performed independently, i.e.
Prfk 2 Si;m 2 Sjg = Prfk 2 SigPrfm 2 Sjg; 8k 6=
m; i; j 2 f1; : : : ; Ng, then after some algebraic manipulations it
can be proven [10] that

E[ri] =
1

N

X
k

E[r[k]]

�[k]c[k]
: (5)

V ar(ri) =
1

N

X
k

V ar(r[k])

�[k]2c[k]
+
N � 1

N2

X
k

E2[r[k]]

�[k]2c[k]
: (6)

Assume thatbi = 1. Then,Y [k] = X[k] + �[k]s[k]; 8k 2 Si,
and, as a consequence,

r[k] = jX[k] + 2�[k]s[k]jc[k] � jX[k]jc[k]:
If s[k] follows a discrete uniform two-level distribution,s[k] 2
f�1; 1g, it can be easily shown that the mean and variance ofr[k]
are

E[r[k]] =
1

2

h�
jX[k]j+ 2�[k]

�c[k]

+
���jX[k]j � 2�[k]

���c[k]i� jX[k]jc[k]

V ar(r[k]) =
1

4

h�
jX[k]j+ 2�[k]

�c[k]

�
���jX[k]j � 2�[k]

���c[k]i2:
These expressions can be applied in equations (5) and (6) to com-
pute the moments ofri. Whenbi = �1, it can be verified that



V ar(ri) is given by Eq. (6) andE[ri] is negative and its absolute
value is given by Eq. (5). When a binary antipodal constelation
withM = 2N is used to encode the hidden message, the probabil-
ity of bit errorPb of the ML decoder (a bit-by-bit hard decisor) is

Pb = Q (SNR), whereQ(x)
4

= 1p
2�

R1
x

e�t
2=2dt and the signal

to noise ratioSNR is defined as

SNR
4

=
E[ri]p
V ar(ri)

: (7)

4. WATERMARK DETECTOR

Now let us analyze the watermark detection test, in which we have
to decide whether a given image contains a watermark generated
with a certain key. The watermark detection problem can be math-
ematically formulated as the binary hypothesis test

H1 : Y [k] = X[k] +W [k]
H0 : Y [k] = X[k]

(8)

whereX[k] is the original image, not available during the test,
andW [k] is a watermark generated from the secret keyK that is
tested. If the watermark carries hidden information, it is not the
goal of the watermark detection test to estimate the hidden mes-
sage; this task is left to the decoding process. Therefore, we must
take into account the uncertainty about the value of the codeword
vectorb when designing the detector. The optimum ML (Maxi-
mum Likelihood) decision rule for the test formulated above is

�(Y )
H1
>
<
H0

�; (9)

where� is the decision threshold and�(Y ) is the likelihood func-
tion

�(Y ) =
1

M

MX
l=1

f(Y j H1; bl)

f(Y j H0)
(10)

If we assume that the coefficients of the original imageX[k]
follow the generalized Gaussian model studied in Sect. 2, and that
the watermark does not carry hidden information, in other words,
that there is only one pulse (N = 1) and it is modulated by a

known valueb1 = 1, then the log-likelihood functionl(Y )
4

=
ln�(Y ) has the form

l(Y ) =
X
k

�[k]c[k]
�
jY [k]jc[k] � jY [k]� �[k]s[k]jc[k]

�
:

(11)

where�[k] is the parameter� in the generalized Gaussian pdf for
the coefficientX[k] (it can be obtained fromc[k] and�[k] using
Eq. (4)).

Let us now analyze the performance of the watermark detec-
tion test conditioned to a certain original image. For this purpose,
we will characterize statisticallyl(Y ) for each of the two hypoth-
esis when we assume thats[k] is the only random element in the
watermarking system. WhenH0 is true, we have thatY [k] =
X[k]; 8k. Therefore,

l(Y ) =
X
k

�[k]c[k]
�
jX[k]jc[k] � jX[k]� �[k]s[k]jc[k]

�
;

which is a sum of statistically independent terms. Hence, applying
the central limit theorem we can infer thatl(Y ) is approximately
Gaussian. Assuming thats[k] is an i.i.d. two-dimensional random
sequence with a discrete marginal distribution with two equiprob-
able levels,s[k] 2 f�1; 1g; 8k, then we can easily prove that the
mean and variance ofl(Y ) conditioned toH0 are [10]

E[l(Y ) j H0] =
X
k

�[k]c[k]jX[k]jc[k]

� 1

2

X
k

�[k]c[k]
�
jX[k] + �[k]jc[k]

+ jX[k]� �[k]jc[k]
�

(12)

V ar(l(Y ) j H0) =
1

4

X
k

�[k]2c[k]
�
jX[k] + �[k]jc[k]

� jX[k]� �[k]jc[k]
�2

: (13)

Similarly, we can prove thatl(Y ) conditioned toH1 is approxi-
mately Gaussian with mean and variance

E[l(Y ) j H1] = �E[l(Y ) j H0] (14)

V ar(l(Y ) j H1) = V ar(l(Y ) j H0) (15)

Let us definem1
4

= E[l(Y ) j H1] and�21
4

= V ar(l(Y ) j H1).
If H1 is decided in the detection test whenl(Y ) > �, then the
probabilities of false alarm (PF ) and detection (PD) are

PF = Q

�
� +m1

�1

�
; PD = Q

�
� �m1

�1

�
: (16)

Let us define the following “signal to noise ratio”

SNR1
4

=
m2

1

�21
: (17)

If we denote byQ�1(PF ) the valuex 2 R such thatQ(x) = PF ,
then it can be easily proved, by examining the expressions in (16),
that

PD = Q
�
Q�1(PF )� 2

p
SNR1

�
: (18)

Hence, the ROC (Receiver Operating Characteristic) of the water-
mark detector depends exclusively on the value ofSNR1. Obvi-
ously, the larger the value ofSNR1, the larger thePD associated
with a certainPF and the better, as a consequence, the perfor-
mance of the detector.

5. PERCEPTUAL MODEL

In Eqs. (1,2) the watermarkW [k] depends on a perceptual mask
�[k] that multiplies the pseudorandom sequences[k]. This per-
ceptual mask determines the maximum amplitude distortion that
each coefficient of the original image may suffer while satisfying
the invisibility constraint. A good psychovisual model in the DCT-
domain (with 8x8 blocks) is capital to render the sequence�[k].
For our work we have followed the model proposed in [5, 6] that
has been also applied to derive adaptive quantization matrices for



the JPEG algorithm [7]. This model has been here simplified by
disregarding the so-calledcontrast-masking effectfor which the
perceptual mask at a certain coefficient depends on the amplitude
of the coefficient itself. Consideration of this effect constitutes a
future line of research. On the other hand, thebackground inten-
sity effect, for which the mask depends on the magnitude of the
DC coefficient (i.e., the background), has been taken into account.

The so-calledvisibility thresholdT (i; j), i 2 f0; � � � ; 7g,
j 2 f0; � � � ; 7g, determines the maximum allowable magnitude
of an invisible alteration of the(i; j)-th DCT coefficient and can
be approximated in logarithmic units by the following quadratic
function with parameterK

log T (i; j) = log

�
Tmin(f

2
i;0 + f20;j)

2

(f2i;0 + f20;j)
2 � 4(1� r)f2i;0f

2
0;j

�

+K
�
log
q
f2i;0 + f20;j � log fmin

�2
;

wherefi;0 and f0;j are respectively the vertical and horizontal
spatial frequencies (in cycles/degree) of the DCT-basis functions,
Tmin is the minimum value ofT (i; j), associated to the spatial
frequencyfmin, andr is taken as 0.7 following [5]. The threshold
T (i; j) can be corrected for each block by considering the DC co-
efficientX0;0 and the average luminance of the screenX0;0 (1024
for an 8-bit image) in the following way

T 0(i; j) = T (i; j)

�
X0;0

X0;0

�aT
:

Note that the actual dependence ofX0;0 on the block indices has
been dropped in the notation for conciseness. Following [5], the
parameters used in our scheme have been set toaT = 0:649,
fmin = 3:68 cycles/degree,Tmin = 1:1548 andK = 1:728.
Once the corrected threshold valueT 0i;j has been obtained, the per-
ceptual mask is calculated as

�[k1; k2] = 4

�
1 +

Æ(l1)p
2 + 1

��
1 +

Æ(l2)p
2 + 1

�
 � T 0(l1; l2) (19)

wherel1 = k1 mod 8, l2 = k2 mod 8 and < 1 is a scaling
factor that allows to introduce a certain degree of conservativeness
in the watermark due to those effects that have been overlooked
(e.g., spatial masking in the frequency domain [8]). The remaining
factors in (19) allow to express the corrected threshold in terms of
DCT coefficients instead of luminances.

6. EXPERIMENTAL RESULTS

In order to validate the theoretical analysis presented in previous
sections, we have watermarked the well-known imageLena(256 x
256 pixels) following the method described in Sect. 1, modifying
only 22 coefficients in the mid-frequency range (low frequency co-
efficients have very low capacity, i.e., slight modifications become
quite visible; high frequency coefficients can be easily erased by
compression algorithms).

To analyze the performance of thewatermark decodingpro-
cess, we watermarked the imageLenawith 100 different keys for
different bit rates, measured in terms of the number of coefficients
altered by each information bit, and computed the resulting bit er-
ror rate (BER). Figure 1 shows one of the watermarks used in the
experiment. In Figure 2 both empirical and theoretical results for

Figure 1:One of the watermarks used in the tests.

c = 1=2 Laplace Gaussian
Empirical 29.38 29.07 21.39

Theoretical 29.34 28.71 20.78

Table 1: Empirical and theoretical signal to noise ratioSNR1 (in
dB) in the watermark detection test.

different values of the generalized Gaussian parameterc are plot-
ted. Note that the parameter in Eq. (19) has been set to 1/5
–so the watermark is well below the visibility level– in order to
produce statistically significant results. The actual performance
is substantially better, but the qualitative conclusions remain the
same. As can be inferred from Figure 2 and also from Figure
3, where the SNR in Eq. (7) is plotted for different values ofc,
good results are obtained in the range1=2 � c � 1. Interestingly
enough, the performance forc = 2, corresponding to the cross-
correlation-based detector used so far in the literature [9], suffers
a severe deterioration, corresponding to a drop of more than 6 dB
in the SNR (cf. Fig. 3).

Although not directly discussed here, our analysis can be some-
what straightforwardly extended to the case of JPEG compression.
Figure 4 shows the theoretical BER obtained when image ‘Lena’
is watermarked (with a 100 bits hidden message) and later com-
pressed with JPEG to a percentage of its original quality. As it
can be seen, in this case, the Laplacian detector (c = 1) per-
forms slightly better than the one withc = 1=2. The Gaussian
(cross-correlation) detector, not shown in the figure, leads to a
much higher BER. The curves labeled as ‘Optimum’ correspond
to a detector specifically designed for the JPEG compression at-
tack.

To measure the performance of thewatermark detectiontest,
we have watermarked the imageLenawith 1000 different keys us-
ing “pure” watermarks carrying no additional information. In Ta-
ble 1 we show both empirical and theoretical values of the “signal
to noise ratio”SNR1 for the imageLenaand detector structures
based on three values ofc. As we have already discussed,SNR1

completely determines the shape of the ROC. We can see that the
theoretical approximations accurately fit the empirical data. Em-
pirical measures ofPF andPD, not shown here, clearly validate
the accurateness of approximations in Eq. (16) [10]. Besides this,
it is clear that substantial gains in performance are obtained by
abandonning the Gaussian statistical assumption.



Figure 2:BER as a function of the pulse size for Lena (256�256).

Figure 3:SNR as a function ofc for Lena (256� 256).

7. CONCLUSIONS AND FURTHER WORK

Novel structures based on the use of generalized Gaussian models
have been proposed for the ML detection of DCT-domain water-
marks embedded in still images. By considering these models,
we have been able to dramatically improve the performance of the
cross-correlation-based detectors that have been used up to date.
In any case, we also have presented a theoretical analysis that al-
lows to assess the performance of DCT-based methods, measured
in terms of the bit error rate and the probabilities of false alarm
and detection, for a given image. The Gaussian detector is simply
a particular case of the generalized model, so the analytical results
given here are directly applicable. One immediate extension of
our analysis is the consideration of channel codes which have been
already shown to considerably improve on spatial-domain water-
marking methods [11]. Another future line of research consists
in fitting a generalized Gaussian model (from a discrete set of pa-
rametersc and�) to the DCT coefficients histogram so as to decide
upon and apply the optimal detector structure.
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