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ABSTRACT

In this paper our recently introduced method called output distri-
butional influence function (ODIF) is used for the evaluation of the
robustness properties of the morphological filters. Several exam-
ples of the ODIFs for the dilation, the closing, and the clos-opening
are given and explained carefully. For each of these morphological
filters the effect of filter length is examined by using the ODIFs for
the expectation and the variance. The robustness properties of the
filters are also compared to each other and the effect of the dis-
tribution of the contamination is investigated for the closing as an
example of realistic filtering conditions.

1. INFLUENCE FUNCTION

Influence function (IF) is a useful heuristic tool of robust statistics
introduced by Hampel [1, 2] under the name influence curve (IC)
for studying the performance of filters under noisy conditions.

Definition 1 . The IF of estimatorT at underlying probability
distributionF is given by

IF(x;T; F ) = lim
t!0+

T ((1� t)F + t�x)� T (F )

t

for thosex where this limit exists.

In this definition�x is the probability measure which puts mass
1 at the pointx. The IF gives the effect that an infinitesimal con-
tamination at pointx has on the estimatorT when divided by the
mass of the contamination. So the IF gives asymptotic bias caused
by the contamination and thus characterizes properties of the esti-
mator as the number of observations approaches infinity.

2. CHANGE-OF-VARIANCE FUNCTION

The IF gives only one aspect of robustness of an estimator,
namely local robustness of the asymptotic value of the estimator.
Another important aspect is the local robustness of the asymptotic
variance. Asymptotic variance of estimatorT at F denoted by
V (T;F ) is defined to be the variance of

p
N [T (FN )� T (F )]

asN ! 1, whereFN is the empirical distribution of sample
(X1;X2; : : : ; XN ). Local robustness of the asymptotic variance
can be characterized by the change-of-variance function (CVF) de-
fined as follows, [3].

Definition 2. The CVF of estimatorT atF is defined as

CVF(x;T; F ) = lim
t!0+

V (T; (1� t)F + t�x)� V (T;F )

t

for thosex where this limit exists.

3. OUTPUT DISTRIBUTIONAL INFLUENCE FUNCTION

Since the IF is an asymptotic measure, it describes properties of
infinite length filters which may differ from those of finite length
filters used in the real world filtering applications. It would be
more useful and more interesting to examine properties of these
finite length filters rather than the asymptotic properties. In the
case where the output distribution of a filter can be expressed in
a closed form as a function of the distribution functions of the in-
put samples we introduced in [5] output distributional influence
function (ODIF) for analysing the robustness of the finite length
filters. It is also required for the IF and the CVF that the filters
are Fisher consistent, i.e., they measure asymptotically the correct
value. This prohibits the analysis of morphological filters by these
asymptotic methods but the ODIFs do not have this limitation.

We assume here that the input samples are independent and
identically distributed (i.i.d.) random variables. First we need a
way to denote the output distribution function of a filter when a
fraction" of the input samples has different distribution than the
rest of the samples. We denote byH(1�")F+"Gy

(�) the output dis-
tributionHF (�) of the filter where every occurrence of the com-
mon distribution functionF of the input samples is replaced by
(1�")F+"Gy andGy can be any distribution function with mean
y. As usual, we defineh(1�")F+"Gy

(x) = d
dx
H(1�")F+"Gy

(x).
We gave the following definition for the ODIF for the distribution
function in [5].

Definition 3. Let the output distribution function of a filter be
HF (�)whereF (�) is the common distribution function of the input
samples and letGy(�) be a distribution function having meany.
Then the ODIF for the distribution function
(�) is


(x; y) = lim
"!0+

H(1�")F+"Gy
(x)�HF (x)

"

for thosex andy where this limit exists.

If the output distribution functionHF (�) does not contain any
derivative ofF , the ODIF for the distribution function
(�) can be
expressed as, [5]


(x; y) =
hF (x)

f(x)
(Gy(x)� F (x)) : (1)



In [5] we defined the ODIF in the same way as for the distri-
bution function in Definition 3 also for the density function and
moments. The ODIFs for the density function, the expectation,
and the variance were derived to be

!(x; y) =
d

dx

(x; y); (2)

!�(y) =

Z
1

�1

x!(x; y)dx; (3)

and

!�2(y) =

Z
1

�1

x
2
!(x; y)dx� 2�HF

!�(y); (4)

where�HF
is the mean of the distributionHF .

4. OUTPUT DISTRIBUTIONS OF ONE-DIMENSIONAL
MORPHOLOGICAL FILTERS

Analytical expressions for the output distribution functions of the
dilation, the closing, and the clos-opening are given in [4] for a dis-
crete signalswhose values are i.i.d. random variables having com-
mon distribution functionF (�) and for a convex one-dimensional
structuring setB of lengthN . The distribution functions for the
dilation, the closing, and the clos-opening are

HF;dil(x) = F (x)N ;

HF;clo(x) = NF (x)N � (N � 1)F (x)N+1
;

and, whenN > 2,

HF;co(x) =
N2 �N � 2

2
F (x)2N+2

+(�N2 +N + 1)F (x)2N+1

+
N2 �N

2
F (x)2N � (N � 1)F (x)N+1

+NF (x)N :

The density functions obtained by differentiation are for the dila-
tion, the closing, and the clos-opening

hF;dil(x) = NF (x)N�1f(x);

hF;clo(x) =
�
N

2 � (N2 � 1)F (x)
�
F (x)N�1f(x);

and, whenN > 2,

hF;co(x) =
�
(N2 �N � 2)(N + 1)F (x)N+2

+(�N2 +N + 1)(2N + 1)F (x)N+1

+(N � 1)N2
F (x)N � (N2 � 1)F (x)

+N2
�
F (x)N�1f(x):

5. ODIFS FOR DILATION

The ODIFs for the distribution and the density functions of the di-
lation
dil(�) and!dil(�) for a convex one-dimensional structuring
setB of lengthN are by equations (1) and (2)


dil(x; y) = NF (x)N�1 (Gy(x)� F (x))
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Figure 1: The ODIFs for the expectation of the dilation for a con-
vex one-dimensional structuring setB of lengths3 (short dashes),
5 (medium dashes), and15 (long dashes) atF = � andGy = �y.

and

!dil(x; y) = N(N � 1)F (x)N�2f(x) (Gy(x)� F (x))

+NF (x)N�1 (gy(x)� f(x)) :

Now by equation (3) we obtain the ODIF for the expectation
of the dilation!�;dil(�) for a convex one-dimensional structuring
setB of lengthN andGy = �y as

!�;dil(y) = N(N � 1)

Z
1

y

xF (x)N�2f(x)dx

�N2

Z
1

�1

xF (x)N�1f(x)dx+NyF (y)N�1:

We denote by� and� the distribution and the density func-
tions of the standard normal distribution. The graphs of the above
function!�;dil(y) whenF = � are shown in Figure 1 for three
different lengths of the structuring setB. As can be seen from the
left half of the Figure 1, negative outliers have fixed influence on
the expectation of the filter. So any negative outlier, irrespective
of its value, decreases the expectation of the output of the filter
the same small fixed amount. This decrease is slightly smaller for
the longer structuring set lengthN . The robustness against posi-
tive outliers is clearly worse. For the dilation the supremum of the
absolute value, i.e., the worst influence which a small amount of
contamination of fixed size can have on the value of the estimator,
equals infinity. As the structuring set length increases the robust-
ness against positive outliers gets worse as can be observed from
Figure 1.

From equation (4) we obtain that the ODIF for the variance of
the dilation!�2;dil(�) for a convex one-dimensional structuring set
B of lengthN andGy = �y is

!�2;dil(y) = N(N � 1)

Z
1

y

x
2
F (x)N�2f(x)dx

�N2

Z
1

�1

x
2
F (x)N�1f(x)dx

+Ny
2
F (y)N�1 � 2�HF;dil

!�;dil(y):
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Figure 2: The ODIFs for the variance of the dilation multiplied
byN for a convex one-dimensional structuring setB of lengths3
(short dashes),5 (medium dashes), and15 (long dashes) atF = �
andGy = �y.

The graphs ofN!�2;dil(y) are plotted to Figure 2 forF = �
and the same lengths of the structuring setB as in Figure 1. The
minima points of the graphs can be found to be aty = �HF;dil

by
differentiating the above function!�2;dil(y) with respect toy and
finding the zero of the derivative. So the variance reduces when
the contamination is near the expectation of the filter having no
contamination. For smaller values ofy the effect of the contami-
nation is constant and very small but for larger values the graphs
are not bounded above and the dilation is thus not robust against
positive outliers either in the variance sense. Altogether the dila-
tion has very poor robustness against positive outliers and should
not be used when such outliers are possible.

6. ODIFS FOR CLOSING

The closing is the dilation followed by the erosion. The ODIFs for
the distribution and the density functions of the closing
clo(�) and
!clo(�) for a convex one-dimensional structuring setB of length
N are by equations (1) and (2)


clo(x; y)

=
�
N

2 � (N2 � 1)F (x)
�
F (x)N�1 (Gy(x)� F (x))

and

!clo(x; y) = N(N � 1) [N � (N + 1)F (x)]

�F (x)N�2f(x) (Gy(x)� F (x))

+
�
N

2 � (N2 � 1)F (x)
�
F (x)N�1

� (gy(x)� f(x)) :

For the closing the ODIF for the expectation!�;clo(�) for a
convex one-dimensional structuring setB of lengthN andGy =
�y is by equation (3)

!�;clo(y)

= N(N � 1)

Z
1

y

x [N � (N + 1)F (x)]F (x)N�2f(x)dx
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Figure 3: The ODIFs for the expectation of the closing for a convex
one-dimensional structuring setB of lengths3 (short dashes),5
(medium dashes), and15 (long dashes) atF = � andGy = �y.

�
Z
1

�1

x
�
N

3 � (N + 1)(N2 � 1)F (x)
�
F (x)N�1f(x)dx

+y
�
N

2 � (N2 � 1)F (y)
�
F (y)N�1:

WhenF = �, the ODIFs for the expectation of the closing are
shown in Figure 3 for the same three lengths as in Figure 1 for
the dilation. Again the negative outliers have small fixed influ-
ence which decreases when the lengthN of the structuring set
increases and the positive outliers can also for the closing take the
expectation over all limits. When the ODIFs for the expectation of
the dilation and the closing are compared on the positive side, it
can be noticed that after a short transition period the slopes of the
curves become constant and the value of the slope for the dilation
is N times the slope for the closing. So the influence of positive
outliers is larger on the expectation of the dilation than on the ex-
pectation of the closing but the both expectations approach infinity
wheny approaches infinity.

From equation (4) we obtain that the ODIF for the variance of
the closing!�2;clo(�) for a convex one-dimensional structuring set
B of lengthN andGy = �y is

!�2;clo(y)

= N(N � 1)

Z
1

y

x
2 [N � (N + 1)F (x)]F (x)N�2f(x)dx

�
Z
1

�1

x
2
�
N

3 � (N + 1)(N2 � 1)F (x)
�
F (x)N�1

�f(x)dx+ y
2
�
N

2 � (N2 � 1)F (y)
�
F (y)N�1

�2�HF;clo
!�;clo(y):

The graphs ofN!�2;clo(y) are shown in Figure 4 forF = � and
three different lengths of the structuring setB. Similarly as for
the dilation the minimum of each of the graphs is found to be at
y = �HF;clo

. The graphs are quite similar to those of the dilation
in Figure 1 otherwise but for the closing the growth of the ODIF
for the variance multiplied byN on the positive side is slower than
for the dilation.
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Figure 4: The ODIFs for the variance of the closing multiplied
byN for a convex one-dimensional structuring setB of lengths3
(short dashes),5 (medium dashes), and15 (long dashes) atF = �
andGy = �y.

7. ODIFS FOR CLOS-OPENING

The clos-opening is the closing followed by the opening and the
ODIFs for the distribution and the density functions
co(�) and
!co(�) for a convex one-dimensional structuring setB of length
N > 2 are by equations (1) and (2)


co(x; y) =
�
(N2 �N � 2)(N + 1)F (x)N+2

+(�N2 +N + 1)(2N + 1)F (x)N+1

+(N � 1)N2
F (x)N � (N2 � 1)F (x)

+N2
�
F (x)N�1 (Gy(x)� F (x))

and

!co(x; y)

=
�
(N2 �N � 2)(N + 1)(2N + 1)F (x)N+2

+(�N2 +N + 1)(2N + 1)2NF (x)N+1

+(N � 1)N2(2N � 1)F (x)N � (N2 � 1)NF (x)

+N2(N � 1)
�
F (x)N�2f(x) (Gy(x)� F (x))

+
�
(N2 �N � 2)(N + 1)F (x)N+2

+(�N2 +N + 1)(2N + 1)F (x)N+1

+(N � 1)N2
F (x)N � (N2 � 1)F (x) +N

2
�

�F (x)N�1 (gy(x)� f(x)) :

Now the ODIF for the expectation of the clos-opening!�;co(�)
for a convex one-dimensional structuring setB of lengthN > 2
is by equation (3)

!�;co(y) =

Z
1

�1

x!co(x; y)dx:

In Figure 5 are shown the graphs of the above function
!�;co(y) for three different values ofN whenF = � andGy =
�y. Behaviour of the graphs on the negative side is the similar
as for the dilation and the closing. The most significant thing is
that the clos-opening has limited supremum of the absolute value
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Figure 5: The ODIFs for the expectation of the clos-opening for
a convex one-dimensional structuring setB of lengths3 (short
dashes),5 (medium dashes), and15 (long dashes) atF = � and
Gy = �y.

and thus the outliers have limited influence on the expectation.
However, the supremum of the absolute value of the clos-opening
increases as the length of the structuring set increases and ap-
proaches infinity whenN approaches infinity. Clearly the clos-
opening has better robustness properties than the dilation and the
closing since the graphs are bounded also above.

From equation (4) we obtain that the ODIF for the variance of
the clos-opening!�2;co(�) for a convex one-dimensional structur-
ing setB of lengthN is

!�2;co(y) =

Z
1

�1

x
2
!co(x; y)dx� 2�HF;co

!�;co(y):

The graphs in Figure 6 showN!�2;co(y) for F = �, Gy = �y,
and three different lengths of the structuring set. Similarly as
for the dilation and the closing the minima of the graphs are at
y = �HF;co

and the negative contamination has only small influ-
ence on the ODIF for the variance. The graphs ofN!�2;co(y) are
bounded above which makes the clos-opening most robust of the
three morphological filters considered thus far also in this sense.

8. EFFECT OF THE DISTRIBUTION Gy

In this section we consider instead of the delta distribution more
realistic noise distributionsGy. We have selected the closing with
the structuring set length5 to illustrate the effect of the distribution
Gy for the morphological filters.

We experimented the ODIFs for the expectation and the vari-
ance with several different distributionsGy. For the same variance
of the contamination the results were very similar to each other.
Due to lack of space we present here the results only for the nor-
mal distribution. In Figure 7 are shown the ODIFs for the expec-
tation whenF = �, N = 5, andGy is the delta distribution and
the normal distribution with the variances1

2
, 1, and2. From this

figure it can be seen that the graph with the smallest variance of the
contamination is closest to the graph for the delta distribution and
the graph with the largest variance furthest. In the area where the
density function� is practically zero the graphs join together but
otherwise they differ from each other. The fact that the normally
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Figure 6: The ODIFs for the variance of the clos-opening mul-
tiplied by N for a convex one-dimensional structuring setB of
lengths3 (short dashes),5 (medium dashes), and15 (long dashes)
atF = � andGy = �y.
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Figure 7: The ODIFs for the expectation of the closing for a convex
one-dimensional structuring setB of length5 atF = � whenGy

is normal distribution with variance12 (short dashes),1 (medium
dashes), and2 (long dashes) and whenGy = �y (solid line).

distributed contaminationsGy increase also the probability of val-
ues neary causes different behaviour of the graphs. The higher the
variance of the normally distributed contamination the wider the
area where the probability increases. For smaller values ofy this
means that the ODIFs for expectation for the normally distributed
contaminations are larger than for the delta distribution and larger
for larger variance of contamination. For somewhat largery the
opposite behaviour is observed.

The ODIFs for the variance multiplied byN for F = �,
N = 5, and the same contaminationsGy as in Figure 7 are shown
in Figure 8. This figure shows how for smaller variance of the
normally distributed contaminationGy also the ODIF for the vari-
ance multiplied byN is closer to the graph for the delta distribu-
tion. When the variance of the normally distributed contaminaton
Gy approaches zero the ODIF for the variance multiplied byN

approaches the graph for the delta function. When the variance
of the contamination is smaller than the variance ofF , the ODIF
for the variance multiplied byN has a negative part. Otherwise
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Figure 8: The ODIFs for the variance of the closing multiplied by
N for a convex one-dimensional structuring setB of length5 at
F = � whenGy is normal distribution with variance1

2
(short

dashes),1 (medium dashes), and2 (long dashes) and whenGy =
�y (solid line).

contamination never decreases the variance when compared to the
variance of the filter having no contamination.

9. CONCLUSIONS

A recently introduced tool for determining the robustness of the
finite length filters was used for the morphological filters. The
ODIFs for the expectation and the ODIFs for the variance multi-
plied byN of the dilation, the closing, and the clos-opening were
plotted for different structuring set lengths. These plots showed
that the robustness of each of these filters against positive outliers
is worse for longer structuring set length. When compared to each
other the robustness of the dilation was found to be the worst and
the robustness of the clos-opening the best. This confirms further
the previous knowledge of these filters. The effect of the distribu-
tion of the contamination was also considered.
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