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ABSTRACT

This work presents some new results on the morpholog-
ical scale-space theory and their use in image segmenta-
tion. Basically, we introduce an idempotent smoothing
operation based on the recently proposed multiscale-
morphological-dilation-erosion method, and analyse
some of its features concerned mainly with monotonic-
ity and the way the image extrema merge in a multi-
scale simpli�cation process.

1. INTRODUCTION

The representation of an image by multiple scales has
proved to be useful in a large number of image process-
ing applications. New and interesting multiscale meth-
ods have been considered for extracting features of a
signal. Recently, Jackway [1] proposed a morphological-
based scale-space method that guarantees the mono-
tone property for the extrema of an image. This prop-
erty, inherent to the scale-space theory, means that the
number of the signal features (the extrema set) de-
creases monotonicly as a function of scale. Thus, if
a signal feature is present at a certain level of represen-
tation, then it can also be found in its �ner represen-
tations, up to the original image (zero scale).

The morphological scale-space is based on the well-
known non-linearmorphological operations [3], and takes
into account both positive and negative scales �. For
positive scales, the image is smoothed by dilation, and
for negative ones it is processed by erosion. The magni-
tude of the parameter j�j represents the intuitive notion
of scale. Let f be an image function de�ned in the dis-
crete domain, f : Df � Z2 ! R. A smoothed version
of this image at scale � is given by [1]
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(f 
 g�)(x) =

8<
:

(f � g�)(x) if � > 0;
f(x) if � = 0;
(f 	 g�)(x) if � < 0;

(1)

where � and 	 stand for grayscale dilation and ero-
sion, respectively, and g� is a scaled structuring func-
tion, g� : G� � Z2 ! R. One can show that in order
to verify the monotonic property, g� should be a non-
positive, anticonvex, and even function with g(0) = 0
[1].

Theorem 1 [2] Let the set of points Emax(f) = f x 2
f : x is a local maximumg and Emin(f) = f x 2 f : x
is a local minimumg represent the extrema of image f .
Then, for any scales �2 < �1 < � < �3 < �4,

Emin(f 
 g�2) � Emin(f 
 g�1 ) � Emin(f) and

Emax(f 
 g�4) � Emax(f 
 g�3 ) � Emax(f)

In his work, Jackway illustrates the use of the mor-
phological scale-space method for reducing monoton-
icly the number of extrema (regional maxima or min-
ima) of an image [1]. He also de�nes the watershed of
a signal [3] smoothed at scale � as the feature of inter-
est. Nevertheless, as stated by the author, the method
cannot be directly applied to image segmentation since
\the watershed arcs move spatially with varying scale
and are not a subset of those at zero scale" [1].

This work addresses this problem by analysing the
way image extrema merge, throughout the di�erent lev-
els of representation, in order to obtain interesting seg-
mentation results from the morphological scale-space
approach.

Section 2 shows briey how we use the set of mark-
ers de�ned at a certain scale to obtain an initial parti-
tion of the image, and discusses some aspects concern-
ing the way image extrema merge across scales. Some
properties related to the de�nition of a basic con�gu-
ration of the original image are discussed in Section 3.



Our conclusions are described in Section 4. Finally, ap-
pendices A and B present the proof of the propositions
introduced in this paper.

2. MORPHOLOGICAL SCALE-SPACE AND
SEGMENTATION

Images 1(a)-1(c) illustrate the algorithm proposed in
[1] which de�nes a multiscale watershed set. Here, the
structuring function is the circular paraboloid g(x; y) =
�(x2 + y2). The algorithm �rst smoothes the original
image f , obtaining (f 
 g�) (Eq. 1). Next, since we
are considering a negative scale, we de�ne the regional
minima of f 
 g� as the set of markers to be used in a
dual reconstruction (homotopy modi�cation [3]) of the
gradient image j 5 (f 
 g�)j. Finally, we compute the
watershed lines of this modi�ed image. As we can see
in Fig. 1(c), these watershed lines can be useful for the
image analysis, but do not delineate regions according
to a common segmentation model.

The scale-space properties are explored here for de�n-
ing a signi�cant set of image extrema representing the
markers for segmentation. Before we focus on this
point, we need to consider the problem of \forcing"
the watershed lines to follow the contour of the regions
being segmented. This can simply be done by a dual
reconstruction of the original image, taking as markers
the set of minima obtained from the �ltering at scale
�. Fig. 1(d) has the same set of regional minima as in
Fig. 1(c). In our case, we use this set to reconstruct
the original image, Fig. 1(a), and obtain the water-
shed of its gradient representing a better partition of
this image (Fig. 1(d)).

The next section discusses some aspects concern-
ing the way the extrema merge across the scale-space
smoothing steps.

2.1. The minima/maximaminimal con�guration
set

Once we de�ne the smoothed image, it is very di�-
cult to characterize the set of extrema that remains (or
should remain) at a certain scale. The following idem-
potence considerations constitute an important simpli-
�cation of this set.

Let f be an image function as before and (f	g�)n =
(((f 	 g�)	 g�) 	 � � � 	 g�)| {z }

n times

. We de�ne an idempotent

smoothed version of f , at scale �, as

(f � g�)(x) =

8<
:

(f � g�)
n(x) if � > 0;

f(x) if � = 0;
(f 	 g�)

n(x) if � < 0;
(2)

(a) (b)

(c) (d)

Figure 1: (a) Original image, and (b) its watershed
lines. (c) The scale-space result for � =-5, and (d) the
scale-space with reconstruction of the original image.

where n is the number of iterations so that (f�g� )n(x) =
(f � g�)n�1(x) for � > 0, and (f 	 g�)n(x) = (f 	
g�)n�1(x) for � < 0. The following two propositions
concern the idempotence property of Eq. 2 (here, we
consider only smoothing through the negative scales,
the extension to the positive ones is obtained from du-
ality). The proof of all the propositions discussed in
this paper is given in appendices A and B.

Proposition 1 For any � < 0 there exists a value n

such that (f 	 g�)n(x) = (f 	 g�)n�1(x).

Proposition 2 For any scales �2 < �1 < 0, let m and
n be the number of iterations such that (f	g�2)

m(x) =
(f 	 g�2)

m�1(x) and (f 	 g�1)
n(x) = (f 	 g�1 )

n�1(x).
In this case, we have that m � n.

The set of regional minima obtained after smooth-
ing the image till idempotence constitutes the minima
minimal con�guration - MMC set at scale �.

Let (f	g�)n(x) de�ne the MMC set at scale �. The
next proposition speci�es the way two minima merge,
during the smoothing operation, till we reach the MMC
set.

Proposition 3 Let xi and xj 2 Emin(f) denote two
points of the image f with f(xi) < f(xj). For a 4-
connectivity and � < 0, we can show that pixel xj will
belong to the inuence zone ?? of xi, Z(xi), if 9xk 2
Z(xi) so that

f(xj)� f(xk) � D� � (d(xj; xk) � 1) (3)

where d denotes the city-block distance and
D� = jsupt2G�(g�(t))j, t 6= 0.



Shortly, the MMC set represents a simpli�cation
of the minima de�ned by the original morphological
scale-space method (Eq. 1). This set, with less non-
signi�cant minima at a certain scale, can be used as a
marker in a segmentation process. Observe that merg-
ing is a function of the distance between minima as
well as their gray-scale value, and that it can be di-
rectly controlled by the structuring function g�. Fig.
2 illustrates such a segmentation based on the same
number of regional minima used as markers. Fig. 3
shows another segmentation example.

(a) (b)

(c) (d)

Figure 2: (a) Original image, and (b) its watershed
lines. (c) The space-scale for � =-8, and (d) the seg-
mentation result.

(a) (b) (c)

Figure 3: (a) Original image, and (b) its watershed
lines. (c) The segmentation result for � = �1.

Finally, we can also prove the following statement
regarding computation time.

Proposition 4 For discrete images, the MMC set can
be obtained from Eq. 2 by considering a small 3 � 3
structuring function g�.

3. PROPERTIES OF THE MMC SET

In this section, we discuss some basic properties of the
morphological scale-space method, showing how they

also hold for Eq. 2. The next result concerns the anti-
extensivity of Eq. 2 for negative scales (a dual result
for positive scales can be obtained from duality).

Proposition 5 The de�nition of the MMC set is rep-
resented by the following properties:

1. For � ! 0, (f � g�)(x)! f(x) for all x 2 Df .

2. For � ! �1, (f � g�)(x) ! inft2Df
ff(t)g for

all x 2 Df .

3. For �2 < �1 < 0, (f �g�2)(x) � (f �g�1 )(x) � f

for all x 2 Df .

The next two propositions relate the value and the
position of the minima in both smoothed and original
images, across the di�erent levels of representation.

Proposition 6 Let the structuring function have a sin-
gle maximum at the origin, that is, g�(x) is a local
maximum so it implies that x = 0 and then:

If � < 0 and (f � g�)(xmin) is a local minimum,
then f(xmin) is a local minimum and (f �g�)(xmin) =
f(xmin).

Proposition 7 Let the structuring function have a sin-
gle maximum at the origin, that is, g�(x) is a local
maximum so it implies that x = 0 and then:

If �2 < �1 < 0 and (f � g�1 )(xmin) is a local min-
imum, then (f � g�2)(xmin) is a local minimum and
(f � g�1 )(xmin) = (f � g�2)(xmin).

Based on the above considerations, we can also guar-
antee the monotonic property of the image extrema
during the MMC set de�nition.

Proposition 8 Let Emin(f) = fx 2 f : x is a regional
minimumg. Then, we can prove that for any scales
�2 < �1 < 0,

Emin(f � g�2) � Emin(f � g�1) � Emin(f)

4. CONCLUSIONS

The work reported here considers the problem of us-
ing the morphological scale-space method for image
segmentation. Our approach is based on the analysis
and simpli�cation of the extrema of an image, whose
smoothed version is characterized by a monotonicly �l-
tering of these extrema. Basically, we have de�ned
an idempotent operation which allows an interesting
representation of the images we can obtain at di�er-
ent scales. As illustrated here, this aspect, associated
with the morphological reconstruction operation, can
be considered to de�ne sound segmentation algorithms
based on the scale-space approach.



A. PROOF OF PROPOSITIONS

Proposition 1
Proof: From proposition 9 in Appendix B, we have
that for a city-block distance, d, and
D� = jsupt2G�(g�(t))j, t 6= 0, any number of iterations
i � n of Eq. 2 is such that,

(f 	 g�)
i(y) � f(x) +D� � d(y; x) (4)

if d(y; x) � i.
For any x and y 2 Df , let s = sup(d(x; y)). Thus,

at iteration s, we have that

(f 	 g�)
s(x) = infff(y) +D� � d(y; x)g: (5)

Therefore, for any iteration t > s, (f 	 g�)s(x) =
(f 	 g�)t(x). Thus, we can say that 9n so that (f 	
g�)n(x) = (f 	 g�)n�1(x), for any x 2 Df .

2

Proposition 2
Proof: When � !�1 and g� ! 0, we have that (f�
g�)(x) = inft2Df

ff(t)g for all x 2 Df . In this case, the
value of the global minimumof the image is propagated
all over the image points and n � supfd(x; y)g for any
x and y 2 Df .

When � ! 0 and g� !1, then (f �g�)(x) = f(x)
for all x 2 Df . In this case, no minimum value is
propagated on the image and n = 1. Thus, we have
that the value of a point can be further propagated at
scale �2 than �1, which yieldsm � n for the scale order
in proposition 2.

2

Proposition 3
Proof: If the point xj 62 Emin(f � g�), then 9y 2
N4(xj; 3� 3) 1 such that

(f � g�)(y) < (f � g�)(xj) � f(xj) (6)

Since we consider that xj will belong to the inu-
ence zone of xi, Z(xi), then

(f � g�)(y) = f(xk) +D� � d(y; xk); (7)

for any xk 2 Z(xi). Thus, from Eq. 6 and 7 we have
that merging will occur when

f(xk) +D� � d(y; xk) � f(xj) (8)

Since d(y; xk) = d(xj; xk)� 1, we have that

f(xj) � f(xk) � D� � (d(xj; xk)� 1): (9)

1NG(x; �) is the set of G-connected points in the neighbor-
hood � of x. G = � represents the connectivity de�ned for the
image extrema (4- or 8- connectivity).

2

Proposition 4
Proof: Let us assume two points x and y with city-
block distance d(x; y) = i, i > 1. According to propo-
sition 9, we have that at iteration i, 9z 2 N4(y; 3 � 3)
with d(z; x) = i� 1 such that

(f 	 g�)
i�1(z) � f(x) +D� � (i� 1) (10)

Therefore,

(f 	 g�)
i(y) � (f 	 g�)

i�1(z) +D�: (11)

From Eq. 10 and 11 we have that

(f 	 g�)
i(y) � f(x)+D� � i � f(x)� g�(y�x); (12)

since �g�(y � x) � D� � i.
Therefore, if at any iteration j < n,

(f 	 g�)
j(y) = f(x) � g�(y � x); (13)

and knowing that at iteration n,

(f 	 g�)
n(y) � f(x) +D� � n � (f 	 g�)

j(y); (14)

thereby the computation of inf t2G�ff(y � t) � g�(t)g
should not be considered for any x with d(y; x) > 1.
In this case, we only need to take into account a 4-
connected 3 � 3 structuring function, g�, in Eq. 2.

2

Proposition 5
Proof: From proposition 9 in Appendix B we have
that for any x 2 Df ,

(f	g�)
n(x) = inf

y2Df

ff(y)+D��d(x; y)g; for any y 2 Df :

(15)
Based on this result, we can state the following

1. For � ! 0, D� ! 1, and the inf value occurs
for y such that d(x; y) = 0, i.e., x = y. Thus,
(f � g�)(x) = f(x).

2. For � ! �1, D� ! 0, and the inf value occurs
for y corresponding to the global minimumof the
image.

3. Since erosion is anti-extensive, (f 	 g�)j � (f 	
g�)i, for any j � i. Thus, according to proposi-
tion 10 in Appendix B,

(f 	 g�2)
j(x) � (f 	 g�2)

i(x) � (f 	 g�1 )
i(x);
(16)

and from propositon 2,

(f � g�2)(x) � (f � g�1)(x) for all x 2 Df : (17)



2

Proposition 6
Proof: Base: Theorem 1 holds for n = 1.

Step: Now, for n > 1, since (f 	 g�)n(x) = ((f 	
g�)n�1 	 g�)(x), from theorem 1 we also have that
if xmin 2 Emin((f 	 g�)n), then xmin 2 Emin((f 	
g�)n�1) and

(f 	 g�)
n(xmin) = (f 	 g�)

n�1(xmin) (18)

Since by hypothesis xmin 2 Emin((f 	 g�)n�1) im-
plies that xmin 2 Emin(f) and

(f 	 g�)
n�1(xmin) = f(xmin); (19)

thus, from equations 18 and 19 and for � < 0, we have
that if xmin 2 Emin((f 	 g�)n), then xmin 2 Emin(f)
and

(f 	 g�)
n = (f 	 g�)

n�1 = f(xmin): (20)

2

Proposition 7
Proof: From proposition 9 in Appendix B, we have
that for any y 2 Df and �2,

(f � g�)(y) = inf
x2Df

ff(x) +D�2 � d(y; x)g: (21)

Now, if y 2 Emin(f � g�2), the inf value occurs for
x = y and f(y) < (f(x)+D�2�d(y; x)) for any x 2 Df .
Since D�2 < D�1 , then f(y) < (f(x) +D�1 � d(y; x))
and y 2 Emin(f � g�1 ).

2

Proposition 8
Proof: For any scales �2 < �1 < 0, let us suppose
proposition 8 is false and Emin(f � g�2) 6� Emin(f �
g�1). Then, there might be a point xmin in the image
such that xmin 2 Emin(f � g�2) and xmin 62 Emin(f �
g�1), which contradicts proposition 7.

2

B. BASIC PROPOSITIONS

Proposition 9 For any iteration i � n of Eq. 2 and
� < 0, we have that

(f � g�)
i(y) � f(x) +D� � d(y; x) (22)

if d(y; x) � i, with d being the city-block distance
and D� = jsupt2G�(g�(t))j, t 6= 0.

Proof: Base: Since the sup value is given by the 4-
connected points, t 2 G�, closer to the origin of the
structuring function, then for d(y; x) = 1,

(f 	 g�)
1(y) � f(x) � g�(x� y) = f(x) +D�: (23)

Step: If a point y is such that d(y; x) = i, then
9z 2 N4(y; 3� 3) with d(z; x) = i � 1 so that

(f 	 g�)
i(y) = inf tf(f 	 g�)

i�1(y � t)� g�(t)g

� (f 	 g�)
i�1(z) +D�: (24)

Since by hypothesis we have the following

(f 	 g�)
i�1(z) � f(x) +D� � (i� 1); (25)

then by replacing Eq. 25 in Eq. 24

(f 	 g�)
i(y) � f(x) +D� � i: (26)

2

Proposition 10 For any scales �2 < �1 < 0 and any
number of iterations i

(f 	 g�2)
i(x) � (f 	 g�1 )

i(x): (27)

Proof: Base: Since the scale-space erosion is anti-
extensive, the inequality holds for i = 1 [2].

Step: By hypothesis we have that (f 	g�2 )
i�1(x) �

(f	g�1 )
i�1(x). Since the scale-space erosion is an anti-

extensive and decreasing operation [2], and

((f 	 g�2)
i�1 	 g�2 )(x) � ((f 	 g�2)

i�1 	 g�1)(x)

� ((f 	 g�1)
i�1 	 g�1)(x);

(28)

then
(f 	 g�2)

i(x) � (f 	 g�1 )
i(x): (29)

2
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