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ABSTRACT

The fractional Fourier transform (FRFT) is a one-para-
metric generalization of the classical Fourier transform.
The FRFT was introduced in the 80th and has found
a lot of applications and is now used widely in signal
processing. Both the space and the spatial frequency
domains, respectively, are special cases of the fractional
Fourier domains. They correspond to the 0th and 1st
fractional Fourier domains, respectively. In this paper,
we brie
y introduce the multi-parametrical FRFT and
its fast algorithms.

1. INTRODUCTION

Fourier analysis is one of the most frequently used tools
in signal processing and in many other scienti�c dis-
ciplines. In the mathematical literature a generaliza-
tion of the Fourier transform known as the fractional

Fourier transform F� (FRFT) was proposed some years
ago. It is known [3]-[6] that the classical FFT is a spe-
cial case of the FRFT. Fourier space and spatial fre-
quency domains are special cases of fractional Fourier
domains. They correspond to the �th fractional Fourier
domains (� = 0 and � = 1; respectively).

In 1937, Condon wrote a paper called "Immersion
of the Fourier transform in a continuous group of func-
tional transformation" [1]. In 1961, Bargmann extended
the FRFT in his paper [2], in which he gave de�nition
of the FRFT, one based on Hermite polynomials as
an integral transformation. If Hn(

p
2�t) is a Hermite

polynomial of order n then the functions

	n(t) =
21=4p
2nn!

Hn(
p
2�t) exp(��t2)

for n = 0; 1; 2; : : : are eigenfunctions of the Fourier

transform

F [	n(t)] =
1

2�

Z +1

�1
	n(t)e

2�t�dt = �n	n(t);

with �n = in being the eigenvalue corresponding to the
nth eigenfunction and they form the orthonormal set
of functions:Z +1

�1
e�2�t2 2
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Hn(

p
2�t)
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2mm!
Hm(

p
2�t)dt = �mn:

(1)
According to Bargmann the FRFT F� := [F�(!; t)]

of order � may be de�ned through its eigenfunctions

F�(!; t) :=

1X
n=0

	n(!)	n(t) =

=
p
2e[�i�(!

2+t2)]
1X
n=0

��nHn(
p
2�!)Hn(

p
2�t);

where F�(!; t) is the kernel of the FRFT.
Obviously, the functions 	n(t) are the eigenfunc-

tions of the FRFT

F�[	n(t)] = ��n	n(t);

corresponding to the nth eigenvalues ��n :
Of course for � = 1 we have F1(!; t) = ei!t: If

0 < j�j < 2 and � := 2'=�; then

F1(!; t) =
exp

h
�i
�
��sgn(sin')

4 � '
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p
'

�

�exp
�
i

�
�
!2 � 2!t cos'+ t2

sin'

��
:

In 1980, Namias reinvented the FRFT again in his pa-
per [3]. This approach was extended by McBride and



Kerr [4]. The FRFT was restricted to pure mathemat-
ical purposes. Very few publications appeared. Then
Mendlovic and Ozaktas introduced the FRFT into the
�eld of optics [5] in 1993. Afterwards, Lohmann [6]
reinvented the FRFT based on the Wigner distribution
function and opened the FRFT to optics applications.
The Wigner distribution of a function f(t) is de�ned
as

Wf (t; !) :=

Z
f(t+

�

2
)f�(t+

�

2
)exp(�2i��!)d�:

There is the following relationship between the frac-
tional FRFT and the Wigner distribution of a function
f(t) :

WF�[f ](t; !) =Wf (t cos'�! sin'; t sin'+! cos');

i.e. the FRFT is a rotation operation applied over the
Wigner plane. Lohmann has proposed in [6] this rela-
tionship as the de�nition of FRFT.

In this paper we brie
y introduce the multi-para-
metric FRFT and develop corresponding fast algorithm.

2. MULTI-PARAMETRIC FRACTIONAL

FOURIER TRANSFORM

Discrete Fourier transform (DFT) F of length N is
de�ned by

F (k) :=
1

N

N�1X
n=0

f(n)e
2�
N
nk;

where f(n) is the signal of the length N from the sig-
nal vector space VN (e0; e1; : : : ; eN�1); spanned on the
natural basis e0; e1; : : : ; eN�1: In operator notation we
write F = Ff : DFT has characteristic equation �4 = 1
since F4 = I; where I is the identity operator. Con-
sequently, the DFT F has only four eigenvalues in the
form of solutions equations �4 = 1 : �(k) = ej

2�
4
k;

k = 0; 1; 2; 3: If N = 2n; then these eigenvalues have
multiplicities 2n�2 + 1; 2n�2 � 1; 2n�2; 2n � 2; respec-
tively.

The Hermite polynomialsHn(
p
2�t) (but not 	n(t))

form a set that is orthonormal with respect to the
weight function

w(t) = exp(�2�t2) = exp

0
@� tq

1
2�

1
A

2

:

It is well known that the discrete counterpart of a Gaus-
sian window is a binomial window, i.e.

w(i) =
1

2N
Ci
N

for i = 0; 1; : : : ; N: The (discrete) orthonormal polyno-
mials that are associated with this window are known
as Krawtchouk's polynomials

Kn(i) =

nX
k=0

(�1)n�kCn�k
N�iC

k
i

for i; n = 0; 1; : : : ; N; i.e.

nX
i=0
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N

"
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2NCn
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#"
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2NCm
N

Km(i)

#
= �nm:

The functions  n(i) :=

r
Ci
N

2NCn
N

Kn(i) form the set of

the eigenvectors of the DFT:

F [ n(i)] = �n n(t):

For large values of N , the binomial window reduces to
a Gaussian window. More speci�cally,

lim
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for t = �(N=2); : : : ; N=2: It can be shown that the
same limiting process turns a Krawtchouk polynomial
into a Hermite polynomial, i.e.

lim
N!1

Kn

�
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N

2

�
=

1p
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Hn

 
tp
N=2

!

Hence, the discrete Hermite transform of length N ap-
proximates the analog Hermite transform of spread � =p
N=2:
Let U = [u0;u1; : : : ;uN�1] be the matrix of eigen-

vectors of an discrete Fourier transform F ; then

UFU�1 = diagf�(k)g

and

F = U�1diagf�(k)gU:

De�nition 1 Let �0; �1; : : : ; �N�1 be arbitrary real
numbers from [0; 1]; then

F�0;�1;:::;�N�1 :=

= U�1
�
diag(��00 (k); ��11 (k); : : : ; �

�N�1
N�1 (k))

	
U (2)

is called multi-parametric fractional Fourier transform

(MFRFT).



The set of all multi-parametric fractional F-trans-
forms form an abelian group (R=4) � (R=4) � : : : �
(R=4); since

F�0;�1;:::;�N�1F�0;�1;:::;�N�1 =

= F�0��0;�1��1;:::;�N�1��N�1 ;

where � is the symbol of addition modulo 1. If �i = �;
8i = 0; 1; : : : ; N � 1; then F�0;�1;:::;�N�1 = F� is the
classical fractional Fourier transform.

According to de�nition 1 e�cient calculation of (1)
require fast computational algorithms for transforma-
tion by U matrix (U-transform).

3. FAST U-TRANSFORM FOR DFT

Let Rot
h
'm j km; lm

i
:=

�
cos'm sin'm

� sin'm cos'm

�
km;lm

be elementary Jacobi-Givens rotations in the 2D coor-
dinate plane (ekm ; ekl) of the signal space

V(e0; e1; :::; eN�1):

In this paper we use a sequential method for reduction
of the classical Fourier transform using a �nite sequence
of elementary Jacobi-Givens rotations:

F(m) :=

= Rot
h
+'m j km; lm

i
� F(m�1) �Rot

h
�'m j km; lm

i
;

where m = 0; 1; :::; S; F(0) := F ; F(S) = diagf�(k)g:
The angles 'm are determined so that w

(m)
km;lm

= w
(m)
lm;km

=

0; where F(m) :=
h
w
(m)
km;lm

i
:

The matrix F (without the �rst column and �rst
row) is centro-symmetric. Therefore, it is block-diago-
nalized by N

2 � 1 rotations of matrix X�
0;N :=0

@p2Rot�0o j 0; N
2

� N
2
�1Y

i=1

2p
2
Rot

h�
4
j i; N � i

i1A :

F(N
2
�1) = X�

0;NFX�
0;N = �X�

0;N

h
C�0;N � ISI

i
X�

0;N ;

where � is a diagonal matrix, consisting of only +1 and
�1, CN

2
+1; SN

2
�1 are discrete cosine and sine trans-

forms, respectively, and I is the antidiagonal matrix.
The transforms CN

2
+1 and SN

2
�1 are centro-sym-

metric and they are block-diagonalized by N
2 � 1 rota-

tions of the matrix X�
1;N

2
�1

= X�
0;N

4
+1
�X�

1;N
4
�1
: After

N � 2 rotations we have the matrix

F(N�2) = X�
1;N

2
�1
F(N

2
�1)X

�
1;N

2
�1
;

which is reducible to a block-diagonal form.

Example 1 Let N = 8 then

F(3) = X�
(0;8)FX�

(0;8) =

=
�p
8

0
BBB@
2
6664
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p
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p
2
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2 1p
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2 � �
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2 �
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2 � �2 �
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2 �
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p
2

1 �
p
2

p
2 �

p
2 1

3
7775 �

�

2
4 �

p
2 2 �

p
2

2 2 �2
�
p
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p
2

3
5
1
A

and

F(6) = X�
(1;8)FX�

(1;8) =

=
�p
8

0
BBB@
2
6664
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3
5
1
A :

If

T
3

8 :=

�
I1 �

�
0 1
1 0

�
�
�

0 1
1 0

�
� I3

�
is the permutation matrix, then

F 0(6) = T3
8F(6)T

3
8 =

=
�p
8

��
2 2
2 �2

�
�
�

0 �2
p
2

�2
p
2 0

�
�

�2
p
2� (�2

p
2)�

�
0 �

p
2

�2
p
8 0

��
:

Thus, we have to do three rotations into the planes
(e1; e2); (e3; e4); (e7; e8); in order to obtain a scalar-
diagonal matrixF9 � diag(1;�1; 1;�1;�j; j;�j):These
rotations are T4

8 =

=

p
2

2

�p
2

�
c
1

3 �s
1

3

s
1

3 c
1

3

�
�
�

1 1
1 �1

�
�

�
p
2�

p
�
�

1 1
1 �1

��
Therefore,

U := T4
8T

3
8X

�
(1;8)X

�
(0;8) =

=

2
664

C1
3

�S1
3

� � � � � �
S1
3

C1
3

� � � � � �
� � +d +d � � � �
� � +d �d � � � �
� � � � +1 � � �
� � � � � +1 � �
� � � � � � +d +d

� � � � � � +d �d

3
775 �



�

2
664

+1 � � � � � � �
� � +1 � � � � �
� +1 � � � � � �
� � � � +1 � � �
� � � +1 � � � �
� � � � � +1 � �
� � � � � � +1 �
� � � � � � � +1

3
775 �

�

2
664

+1 � � � �1 � � �
� +1 � �1 � � � �
� �

p
2 � � � � �

� +1 � +1 � � � �
+1 � � � +1 � � �
� � � � � +1 � �1
� � � � � �

p
2 �

� � � � � +1 � 1

3
775 �

�

2
664

p
2 � � � � � � �
� +1 � � � � � �1
� � +1 � � � �1 �
� � � +1 � �1 � �
� � � �

p
2 � � �

� � � +1 � +1 � �
� � +1 � � � +1 �
� +1 � � � � � +1

3
775 ;

where Ck
m := cos( k�2m ); S

k
m := sin( k�2m ); d =

p
2
2 :

Finally, we give the matrix representation of the fast
transform for N = 16 in the appendix.

4. REFERENCES

[1] Condon E.U.: Immersion of the Fourier transform
in a continuous group of functional transforms.
Proc. Nat. Acad. Sci. USA 23, pp. 158-164, 1937

[2] Bargmann V.: On a Hilbert space of analytic func-
tions and an associated integral transform. Part 1.
Commun. Pure Appl. Math. 14, pp. 187-214, 1961

[3] Namias V.: The fractional order Fourier transform
and its application to quantum mechanics. J. Inst.
Math. Appl., vol. 25, pp. 241-265, 1980

[4] McBride A.C., Kerr F.H.: On Namias' fractional
Fourier transforms. IMA J. Appl. Math., vol. 39,
pp. 241-265, 1987

[5] Ozaktas H.M. and Mendlovic D.: Fourier trans-
form of fractional order and their optical interpre-
tation. Opt. Commun. 110, pp. 163-169, 1993

[6] Lohmann A.W.: Image rotation, Wigner rotation,
and the fractional order Fourier transform. J. Opt.
Soc. Am. A., vol. 10, pp. 2181-2186, 1993

[7] Almeida L.B.: The Fractional Fourier Trans-
form and Time-Frequency Representations IEEE
Trans. Signal Processing. Vol. 42, No. 11, pp.
3084-3091, 1994

[8] Ozaktas H.M., Barshan B., Mendlovic D. and
Onural L.: Convolution, �ltering and multiplex-
ing in fractional Fourier domains and their relation
to chirp and wavelet transforms. J. Opt. Soc. Am.

A., vol. 11, 1994, pp. 547-559, 1994

[9] Kutay M.A., Ozaktas H.M., Onural O. and Arikan
L.: Optimal Filtering in fractional Fourier Do-
mains. Proc. 1995 ICASSP, IEEE, Piscataway,
New Jersey, pp. 937-940, 1995

[10] Zalevsky Z., Mendlovic D.: Fractional Wiener �l-
ter. Appl. Opt. vol. 35, pp. 3930-3936, 1996

5. APPENDIX

Finally, as an example, we give the matrix representa-
tion of the fast transform for N = 16 :

U := T5
16T

4
16T

3
16X

�
(1;16)X

�
(0;16);

where

T5
16 =

=

2
66664

+1 � � � � � � � �
� +d +d � � � � � �
� �d +d � � � � � �
� � � C1

3
� S1

3
� � �

� � � � C1
3

� S1
3

� �
� � � �S1

3
� C1

3
� � �
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3

� C1
3

� �
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3
77775�

�

2
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� � C1

3
� S1

3
� �

� � � C1
3

� S1
3

�
� � �S1

3
� C1

3
� �

� � � �S1
3

� C1
3

�
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3
775 ;

T4
16 =

=

2
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+d � �d � � � � � �
� +1 � � � � � � �

+d � +d � � � � � �
� � � +d � � +d � �
� � � � +d �d � � �
� � � � +d +d � � �
� � � �d � � +d � �
� � � � � � � C1

4
S1
4
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4

C1
4

3
7775�

�

2
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C3
4

�S3
4
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S3
4

C3
4

� � � � �
� � +d � � +d �
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� � �d � � +d �
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3
75 ;

T3
16 =

=

2
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� � � � +1 � � � �
� � +1 � � � � � �
� � � � � � � +1 �
� � � � � +1 � � �
� � � � � � � � +1

� � � � � � +1 � �

3
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�

2
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+1 � � � � � �
� +1 � � � � �
� � � +1 � � �
� � +1 � � � �
� � � � +1 � �
� � � � � � +1

� � � � � +1 �

3
75 ;

X�
(1;16) =



=

2
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+1 � � � � � � � �1
� +1 � � � � � �1 �
� � +1 � � � �1 � �
� � � +1 � �1 � � �
� � � �

p
2 � � ��

� � � +1 � +1 � � �
� � +1 � � � +1 � �
� +1 � � � � � +1 �
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3
7775�

�

2
64

+1 � � � � � �1
� +1 � � � �1 �
� � +1 � �1 � �
� � �

p
2 � � �

� � +1t � +1 � �
� +1 � � � +1 �

+1 � � � � � +1

3
75 ;

X�
(0;16) =

=

2
66666666664

p
2 � � � � � � � � � � � � � � �
� +1 � � � � � � � � � � � � � �1
� � +1 � � � � � � � � � � � �1 �
� � � +1 � � � � � � � � � �1 � �
� � � � +1 � � � � � � � �1 � � �
� � � � � +1 � � � � � �1 � � � �
� � � � � � +1 � � � �1 � � � � �
� � � � � � � +1 � �1 � � � � � �
� � � � � � � �

p
2 � � � � � � �

� � � � � � � +1 � +1 � � � � � �
� � � � � � +1 � � � +1 � � � � �
� � � � � +1 � � � � � +1 � � � �
� � � � +1 � � � � � � � +1 � � �
� � � +1 � � � � � � � � � +1 � �
� � +1 � � � � � � � � � � � +1 �
� +1 � � � � � � � � � � � � � +1

3
77777777775

Similar expressions were found forU-transform lengths
up to 256.


