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ABSTRACT

Two items will be presented in the talk. The �rst one
is modi�cation of classic Daubechies compactly sup-
ported wavelets preserving localization in time with the
growth of smoothness. The second one is nonstation-
ary wavelets with the use of scaling �lters that vary
from one scale to the next �ner one.

Wavelets are a tool for decomposing functions in
various applications. It is closely connected with trans-
forms in signal processing (subband coding algorithms,
multiresolution transform in computer vision). Local-
ization in time and frequency of wavelets are of main
signi�cance for applications.

A function  2 L2(R) is called a stationary or-
thonormal wavelet if its normalized, translated dilates
 jk(t) := 2j=2 (2j t � k); j; k 2 Z t 2 R; form an
orthonormal basis for L2(R). In the wavelet theory
the localization of ' is characterized by the radius of
autocorrelation function �(t) :=

R
R
'(s)'(s � t) ds :

�(�) :=

�Z
R

t2 j�(t)j2dt=
Z
R

j�(t)j2dt
�1=2

:

Similar constant for Fourier transform

b�(!) := Z
R

�(t)e�i!t dt

is de�ned as

�(b�) := �Z
R

!2 jb�(!)j2d!=Z
R

jb�(!)j2 d!�1=2

:

The product of radii �(�)�(b�) is called an uncertainty
constant of �:

The uncertainty constants of classic Daubechies
wavelets [1] run to in�nity with the growth of smooth-
ness, because they approximate in L2(R) the Shannon

This work was supported by RFBI grand 98-01-00044 and

by grand "Russian Universities".

wavelets [2]. The Daubechies construction can be mod-
i�ed to obtain compactly supported wavelets approxi-
mating in L2(R) the Meyer wavelets, and as a conse-
quence the uncertainty constants of that wavelets are
uniformly bounded with respect to smoothness.

1. CONSTRUCTION OF MODIFIED

DAUBECHIES WAVELETS

Let a 2 (0; 1) and fa(t) be in�nitely di�erentiable non-
negative function on [�1; 1] equal to 0 if t 2 [�1;�a]
and satisfying the identity fa(t) + fa(�t) = 1;
t 2 [�1; 1]: Denote by bNl (t) :=

�
N
l

�
(1+t2 )l(1�t2 )N�l;

l = 0; 1; :::;N; the Bernstein polynomials for the inter-
val [�1; 1]; tN;l :=

2l�N
N

; l = 0; 1; :::;N:
For every N 2 N de�ne trigonometric polynomial

ma
N (!) with real coe�cients by the equation

jma
N(�)j2 = Ba

N(cos �); ma
N(0) = 1; (1)

where Ba
N (t) =

NP
l=0

fa(tN;l)bNl (t) are Bernstein polyno-

mial approximating fa. Such polynomial ma
N exists by

the F.Riece lemma.
De�ne the scaling function 'a;N and the correspon-

ding wavelet  a;N by Fourier transform:

b'a;N(!) = 1Q
l=1

ma
N (

!
2l );

b a;N(!) = e�i!=2ma
N(

!
2 + �)

1Q
l=2

ma
N (

!
2l
):

Theorem 1.1 [3] For every N 2 N  a;N is a station-
ary orthonormal wavelet and there exists a constant
� > 0 such that functions 'a;N and  a;N belong to
C�N ; where

C� := ff :

Z
R

f̂(!)(1 + j!j)�d! <1g; � > 0:

Remark 1.1 If in the above construction we take the
characteristic function of [0; 1] instead of the function
fa we will obtain the classical Daubechies wavelets.



2. UNCERTAINTY CONSTANTS OF

MODIFIED DAUBECHIES WAVELETS

In order to estimate the uncertainty constants of the
modi�ed Daubechies wavelets we need the de�nition of
Meyer scaling function [4] 'M :

d'M (!) :=pfa(cos(!=2))�[�2�;2�](!);

which generates the wavelets with compactly supported
Fourier transform. Here �e is a characteristic function
of set e:

Denote by

�M (t) :=
R
R
'M (s)'M (s � t) ds;

�a;N (t) :=
R
R
'a;N(s)'a;N (s� t) ds:

the corresponding autocorrelation functions of Meyer
scaling function and modi�ed Daubechies scaling func-
tion.

Theorem 2.1 If the function fa satis�es conditions

(fa)00(t) � 0 if t � 0; (fa)00(t) � 0 if t > 0;

(fa)
0(t) � C

p
fa(t) for some constant C;

then

limN!1 kb�a;N � b�M kLp
= 0; 1 � p <1;

limN!1�b�a;N = �b�M ;

limN!1��a;N � C 4
p
2

(
p
2�1)k�M k2 ;

and consequently

lim
N!1

�b�a;N
��a;N � �b�M 4

p
2

(
p
2� 1)k�M k2

<1:

3. NONSTATIONARY WAVELETS

The concept of nonstationary orthogonal wavelets
means that functions  jk , while still being assumed to
be the 2�j-shifts of functions  j0, are not be assumed
to be the dilates of  0k. This concept was introduced
in [5],[6]. It turns out that this generalization leads to
interesting bases for L2(R). For example, it is proved
in [4] and [8] that there does not exist stationary or-
thogonal in�nitely di�erentiable compactly supported
wavelet. However, it is shown in [6] and [7] how to
construct nonstationary orthonormal in�nitely di�er-
entiable compactly supported wavelets. Nonstationary
scaling functions are de�ned in Fourier domain by equa-
tions

b'Tj (!) := 2�j=2
Q1

l=j+1mT (l)(!2
�l);b'a;Tj (!) := 2�j=2

Q1
l=j+1m

a
T (l)(!2

�l);

where T := fT (N)gN2N is a sequence of positive inte-
gers satisfying the conditions

lim
N!1

T (N) =1; T (N) � T (N + 1) � T (N) + 1;

mN is classical Daubechies �lters (Remark 1.1), ma
N is

modi�ed Daubechies �lters de�ned by (1). As usual

'Tj;k(t) := 'Tj (t � k2�j);
'a;Tj;k (t) := 'a;Tj (t� k2�j):

The corresponding wavelets are de�ned by

b Tj (!) := e�i!2
�j�1

mT (j+1)(�!2�j�1 � �)b'Tj+1;b a;Tj (!) := e�i!2
�j�1

ma
T (j+1)(�!2�j�1 � �)b'a;Tj+1;

 Tj;k(t) =  Tj (t � k2�j);  a;Tj;k (t) =  a;Tj (t� k2�j):

Theorem 3.1 Systems

	T := f'T0k;  Tjk j; k 2 Z; j � 0g;

	a;T := f'a;T0k ;  
a;T
jk j; k 2 Z; j � 0g

have the following properties:

	T ; 	a;T are orthonormal bases for L2(R);
	T � C1(R); 	a;T � C1(R);
supp 'T00 � [0; 2T (1) � 1];

supp 'a;T00 � [0; 2T (1)� 1];
supp Tj0 � [�(T (j + 2) + 1)2�j ; (T (j + 1) � 1)2�j ];
supp a Tj0 � [�(T (j + 2) + 1)2�j ; (T (j + 1)� 1)2�j ]
j 2 Z; j � 0:

For 	T Theorem 3.1 is proved in [7], for 	a;T the rea-
soning is completely similar. A general theory of non-
stationary multiresolution analysis with trigonometric
�lters is presented in [9].

4. UNCERTAINTY CONSTANTS OF

NONSTATIONARY WAVELETS

The drawback of nonstationary wavelets 	T construc-
ted on the basis of classic Daubechies �lters is the
fact that their uncertainty constants are not uniformly
bounded.

Since sequence T is �xed through this paper we
omit this index to simplify the notation. Let �j be au-
tocorrelation function of 'Tj : It is more convenient to
estimate uncertainty constants of autocorrelation func-
tions being dilated to the zero scale: �0

j (t) := �j(2�j t):

Theorem 4.1

limj!1 kc�0
j � �[��;�]kLp

= 0; 1 � p <1;

lim infj!1�(c�0
j ) � �p

3
;

limj!1�(�0
j ) =1;



and consequently

lim
j!1

�(c�0
j )�(�0

j ) =1:

However, the application of modi�ed Daubechies �l-
ters instead of classical ones in the construction of non-
stationary wavelets leads to nonstationary orthonormal
in�nitely di�erentiable compactly supported wavelets
with uniformly bounded uncertainty constants.

Let �a
j be autocorrelation function of 'a;Tj : We

again shall estimate uncertainty constants of autocor-
relation functions dilated to the zero scale: �a;0

j (t) :=

�a
j (2

�j t):

Theorem 4.2 If function fa satis�es conditions

(fa)00(t) � 0 if t � 0; (fa)00(t) � 0 if t > 0;

(fa)0(t) � C
p
fa(t) for some constant C;

then

limj!1 kd�a;0
j � b�M kLp

= 0; 1 � p <1;

limj!1�(d�a;0
j ) = �(b�M );

limj!1�(�a;0
j ) � C 4

p
2

(
p
2�1)k�M k2 ;

and consequently

lim
j!1

�(d�a;0
j )�(�a;0

j ) � 4
p
2

(
p
2� 1)k�M k2

�(b�M ) <1:

The numerical implementation of nonstationary
wavelet analysis has the same pyramidal structure as
in the standard fast wavelet transform algorithm, us-
ing longer �lters at the high scales and smaller �lters
at the coarse scale. The idea is very natural in terms
of signal processing since it does not make sense to use
a �lter with a comparable size to that of the whole
signal at the coarse scales. The regularity of the con-
struction will not be a�ected by the use of small �lters
(corresponding to nonregular scaling functions) at the
coarsest scales.
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