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ABSTRACT

The local adaptive processing of signals and images in a
transform domain within a sliding window suggests cer-
tain advantages in some signal and image de-noising ap-
plications due to incorporating an available a priori infor-
mation about the signals and noises. However, an opti-
mum transform size is also data dependent and generally
is not known in advance. Performing the de-noising with
the varying transform size suggests further improvements.
The approach based on the intersection of con¿dence inter-
vals (ICI) rule for a selection of the varying transform size
is introduced.

1. INTRODUCTION

The discrete orthogonal transforms are widely used in the
adaptive signal and image de-noising. In particular, it is
known [11] that the discrete cosine transform (GFW) is a
good approximation of the optimal Karhunen-Loeve trans-
form for highly correlated data. A transform size is an im-
portant parameter for a transform based adaptive¿ltering.
Relatively homogeneous portions of an image have higher
de-noising performance with increasing transform size, while
nonhomogeneous transition parts need a smaller transform
size for the better detail preservation. The transform with
a spatially varying transform size is able to improve noise
attenuation and the detail preservation and provide a better
performance than it can be achieved by this transform with
a¿xed transform size.

The methods considered in this study are based on the
following ideas. First, an image can be treated as consisting
from more less homogeneous parts. Second, the location
and size of these parts are not known in advance.

We use the sliding orthogonal transform with the spa-
tially varying size. TheLFL rule is proposed for the adap-
tive transform size selection. In principle, theLFL enables
¿lters to become spatially adaptive over a wide range of the
classes of signals in the sense that its quality is close to that

which one could achieve if smoothness of the signals was
known in advance [3],[6],[7].

2. LOCAL ADAPTIVE PROCESSING IN
TRANSFORM DOMAIN

When spectra of a signal and a noise are separable in an
invertible transform domain, a de-noising in the transform
domain and performing the inverse transform are ef¿cient
methods of removing the noise [1], [2],[12].

General¿ltering algorithm consists of the following three
steps:

1. Computing spectral coef¿cients

d @ We

of the observed signale within the window over the
chosen orthogonal transformW.

2. Modifying the spectral coef¿cients

d3u @ i+du> u,

3. Performing the inverse transform

e3 @ W�4d3

The signal and noise spectra are overlapping in the most
of applications. Therefore, the higher levels of the noise
attenuation is possible as a rule only at the cost of the lower
level detail preservation [8],[9],[10],[12].

Generally, the hard or soft thresholding are conventional
methods of the spectra modi¿cation [1],[2].

Performing the de-noising in a running window and com-
bining (generally averaging) the results returned for the same
sample improves the¿lter performance due to the improved
detail preservation [9],[12]. We consider the values of the
threshold in the spectrum modi¿cation and the window size
as main adjustable parameters of our smoothing procedure



and we select these parameters independently for every pixel
of the image. In another words, we try to ¿t the best de-
noising procedure for the every pixel of the image.

While we assume that the used orthogonal transform as
well as the spectrum thresholding are quite conventional the
main efforts in this paper are produced in the direction of
the threshold value and window size selection.

In our study we assume the hard thresholding in the con-
ventional form

d3u @ du � 4+mdu m � w,>

4+m{m � w, @

�
4> m{m � w

3> m{m ? w
>

wherew is a value of the threshold and4+m{m � w, is the
indicator-function.

Thus, the main problem concerns a selection of the opti-
mal varying locally adaptive thresholdswwhich are assumed
to be different for the every pixel and window sizes also spa-
tially adaptive.

3. THE ICI RULE

Let the image intensity model for the pixel+l> m, be of the
form

{+l> m, @ v+l> m, . q+l> m,>

wherev+l> m, andq+l> m, are a signal and noise respectively..
Let av+l> m> k, be the estimate ofv+l> m, obtained by the

transform with the window sizek
Let us introduce a¿nite set of window sizes:K @

ik3 ? k5 ? ==== ? kPj> starting with a smallk3 and
determine a sequence of the con¿dence intervalsG+kn, of
the biased estimates corresponding to the window sizekn

G+kn, @ ^Xn> On`> (1)

Xn @ av+l> m> kn, . � � �+l> m> kn,>
Ol @ av+l> m> kn, � � � �+l> m> kn,>

where� is a threshold of the con¿dence interval,av+l> m> kn,
is the estimate ofv+l> m, using the windowkn and�+l> m> kn,
is the standard deviation of this estimate.

TheLFL rule gives the adaptive window size as the fol-
lowing procedure:

Consider an intersection of the intervalsG+kn,> 4 �
n � P> with increasingkn, and letp be the largest of
thosen for which the intervalsG+kn,> 4 � n � p> have a
point in common. Thisp de¿nes the adaptive window size.

Thus, the adaptive window size is de¿ned as the largest
window size whose con¿dence interval of the correspond-
ing estimate intersects with the con¿dence intervals of all
smaller window sizes [4],[5].

4. ALGORITHM

Algorithm is composed of the following steps for zero mean
white Gaussian noiseQ:

� Estimate the standard deviation of the noise from the
noisy observation[ @ V.Q:

�q @
s
5phgldq+dev+W[,,

dev+d, @ imd3m> md4m> ===> mdi mj
whereT corresponds to the global transform having
good signal compaction property. A local noise vari-
ance estimation may also be employed for locally vary-
ing noise [8].

� For each pixel location+l> m, in the observation

1. Start with minimum window sizek3
2. Form the local observationrl>m>n by taking the

elements inside the window having a size ofkn
and located at+l> m,.

3. Obtain theGFW spectral coef¿cients ofrl>m>n

|+l> m> kn, @GFW+rl>m>n,

4. Set the thresholdwn as a function of noise stan-
dard deviation and the window size. A simple
linear model is used:

wn @ +�f . �okn,�q

where�f> �o are empirically found constants. A
size dependent threshold is preferred, because
the more homogeneous the local portion the bet-
ter performances are obtained both by larger win-
dow size and by higher threshold.

5. Perform hard thresholding :

|
3+l> m> kn, @ |+l> m> kn, � 4+m|+l> m> kn,m A wn,

The spectral coef¿cient corresponding to the mean
value ofrl>m>n is preserved.

6. Perform the inverse transform of the thresholded
spectral coef¿cients to obtain an estimate of the
signal in the corresponding window

av+l> m> kn, @GFW
�4+|3+l> m> kn,,

7. Set the con¿dence intervalGav+l>m>kn, for the pixel
intensity estimateav+l> m> kn, at the location+l> m,
computed by using window sizekn

Gav+l>m>kn, @ ^Xav+l>m>kn,> Oav+l>m>kn,`

Xav+l>m>kn, @ av+l> m> kn, . ��hl>m>n
Oav+l>m>kn, @ av+l> m> kn, � ��hl>m>n

�hl>m>n @ �q
&+|3l>m>n,

&+|l>m>n,
>



where #(x) is a number of nonzero elements of
the vector {, and the variance of the estimate
�hl>m>n is considered as the unattenuated noise
components (considering the noise to be uni-
formly distributed in the spectral coef¿cients).

8. Compute the intersection of the con¿dence in-
tervals

Lav+l>m>k3, @ Gav+l>m>k3,>

Lav+l>m>kn, @ Gav+l>m>kn, _ Lav+l>m>kn�4,>
n @ 4> 5> ====

9. Increase window sizekn A kn�4 and repeat the
and repeat from step 2 to 8.

10. Stop when the intersectionLav+l>m>kp.4, of the
con¿dence intervals is empty. Thenkp is the
selected window size of estimation for the pixel
+l> m,. The estimate is given byav+l> m> kp,=

� Pass to the next pixel.

As a result of the above calculations we obtain the esti-
mate for the every pixel+l> m, and neighboring points in the
adaptive window. As the windows are overlapping we have
a varying number of estimates for the every pixel obtained
in the different windows. The¿nal estimate for each pixel is
obtained by combining the multiple estimates available for
the same pixel.

5. COMPARATIVE RESULTS

The algorithm was implemented in MATLAB and tested
with the ’montage’ image. The image having intensity val-
ues between3 and4 was corrupted by white Gaussian noise
with standard deviation� @ 3=4= The proposed algorithm
attenuated the root mean square error (RMSE) to 0.0287,
while local adaptive de-noising with¿xed sizeGFW at-
tenuated RMSE to 0.0324 and Wiener¿lter of optimal size
(5x5) attenuated to 0.0408. The maximum absolute error
after suggested¿ltering was 0.265 and the mean absolute
error (MAE) was 0.0193.

The comparative¿gures are given in Table 1. The orig-
inal, corrupted and¿ltered by the proposed method images
are plotted in Figures 1,2,3. The varying window sizes are
plotted in Figure 4.
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Figure 1: Original Image

Figure 2: Corrupted image

Table1: Comparative results.
Used Filter RMSE MAE
LAD with adaptive transform size 0.0287 0.0193
LAD with ¿xed transform size 0.0314 0.0204
Wiener Filter (5x5) 0.0408 0.0274
Wavelet Package Haar 0.0585 0.0444
Wavelet Package Sym 8 0.0464 0.0310
Wavelet PO Haar (4 levels) 0.0567 0.0411
Wavelet PO Sym 8 (4 levels) 0.0693 0.0485
Wavelet TI Haar (5 levels) 0.0317 0.0205
Wavelet TI Sym 8 (5 levels) 0.0365 0.0261

Figure 3: De-noised image

Figure 4: Distribution of window sizes: from windows con-
taining a single pixel (darkest points) to the windows con-
taining 64 and more pixels (brightest points)


