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ABSTRACT

A wide class of fast image compression algorithms are
elaborated in this paper. Proposed technique di�er
from the known spectral algorithms so that it trun-
cates generalized cepstrum rather than spectrum to-
gether with additional information on spectrum phase
for increasing of compression rate.

1. INTRODUCTION

Modern video information registration and transmis-
sion systems are characterized by high rate of input
information ow and large volumes of accumulated in-
formation. Such situation generates serious problems
especially when data are transmitted in real time and
in a limited frequency band. Hence a problem of reduc-
tion of redundancy of the processed space{time signals
is very practically actual.

The source of statistical redundancy of an image
is a high correlation of its samples. For its reduction
(N � N){sample image sN is transformed using 2{D
unitary transform (UT)

SN = FsN
which partially decorrelates the samples of the image.
The essence of linear compression is the following: the
most "powerful" L2 < N2 spectral samples

SL = �(
)SN

are transmitted through the telemetric channel (instead
of N2 initial samples), where �(
) is characteristic
function of transparency (L� L){window.

Image estimation is made in reverse order:

bsN = F�1SL:
This algorithm of compression and reconstruction is
su�ciently well studied and investigated now for a wide

class of unitary transforms: Fourier, Walsh transforms,
cosine, sine transforms etc. They are called linear spec-

tral algorithms of compression.
The total decorrelation (and hence maximal com-

pression) is achieved by Karhunen{Loeve transform.
But KLT has no fast algorithm. Hence in practice it
is changed by a unitary transforms having fast algo-
rithms. The gain of speed is accompanied with the loss
of quality of the reconstructed image.

To overcome this shortcoming (especially for wide{
band images) the present paper suggest

� fast bilinear generalized auto-correlation and cep-

strum compression algorithms,

� methods of extrapolation of the received trun-
cated spectrum SL, that would allow to realize
fast linear and bilinear algorithms of reconstruc-
tion with super-resolution of compression image.

2. FAST BILINEAR GENERALIZED

AUTO-CORRELATION AND CEPSTRUM

COMPRESSION ALGORITHMS

Let K := [0; N � 1]� [0; N � 1] and K� := [0; N � 1]�
[0; N � 1] are two examples of rectangular (N � N){
point subset of the set Z2 := Z � Z: The �rst of them
will be called a space (spatial) domain and the second
one - { a F{spectrum domain. Let us consider images
as functions of brightness of the form

sN (n) : K �! R
+;

where n := (n1; n2) 2 K � Z2; R+ is the set of positive
numbers.

The space of images will be denoted as

L2(K;R+) :=
�
sN j sN : K �! R

+
	
:

We introduce an arbitrary orthogonal basis

��(n) 2 L2(K;R+);



where n := (n1; n2) 2 K; � := (�1; �2) 2 K�: Then
any image can be decomposed in generalized Fourier

series in this basis

sN (n) =
X
�2K�

SN(�)��(n);

where
SN (�) =

X
n2K

sN (�)��(n);

or in matrix notation

sN = F�1S; SN = Fs:
This expressions are called generalized inverse and di-

rect Fourier transforms.

De�nition 1 Image s�L that takes nonzero values in
some (L�L){ point subset 
 2 K of the space domain
K will be called image with �nite support (= �nite im-

age).

De�nition 2 Image s�N the spectrum S of which takes
nonzero values in some (L��L�){point subset 
� 2 K�

of the spectrum domain K� will be called image with

�nite spectrum.

De�nition 3 Generalized F{auto-correlation function

(F{ACF) of the image sN is called an expression

CORNfsNg := F�1 �jFfsNgj2	 = F�1 �jSN j2	 :
If the F is Fourier transform then COR is classi-

cal (arithmetic) auto-correlation function, if the F is
Walsh transform then COR is dyadic (logical) auto-
correlation function etc.

De�nition 4 Generalized (F ; f){cepstrum of image sN
is called an expression

CEPNfsNg := F�1 ff (FfsNg)g :
Surely, in the case when pair (F ; f) is the Fourier

transform and a square, then CEP = COR, if it is
Fourier transform and f = log; then CEP is classical
cepstrum. In all another cases we obtained a gener-
alized auto-correlation functions or a generalized cep-
strum.

De�nition 5 Image sN the cepstrum CEPLfsNg of
which takes nonzero values in some (L�L){point sub-
set 
 2 K of the space domain K will be called image

with �nite cepstrum.

Let us suppose that f is whitening function (type
log;p; etc), that is, a function equalizing a spectrum
in the spectral domain of generalized frequencies 
�:

In this case CEPNfsg (or CORNfsg as special case of
CEP) will be of a small localization, despite of the ini-
tial signal spectrum SN width. This fact give a possible
to truncate CEPL to L2 << N2 samples (where L2 :=
Card(
�) is cardinality of the subset 
�) and their
transition along the communication channels. This al-
low obtain the compression coe�cient Kcomp = N=L:
At the receiving side reconstruction is realized in the
inverse order:

bsN = F�1 �f�1 fFfCEPL(s)gg
	

if the function f doesn't destruct information about the
spectrum phase. In opposite case it must be compen-
sated by the transmission of the phase �N := arg(SN )
along the communication channel together with CEPL(S):
In this case the reconstruction algorithm becomes of
the form:

bsN = F�1 ��N � f�1 fFfCEPL(s)gg
	
:

In particular, when f = f�1 = 1; and F is orthogo-
nal transform, we obtain the image compression and
reconstruction algorithm basing on image F{spectrum
phase:

bsN = F�1 f�Ng = F�1 fsign(SN )g
that asks for compression one bit per one pixel of image.

3. GENERALIZED FUNCTIONS WITH

DOUBLE ORTHOGONALITY

In [2], Slepian addressed the quation of the extent to
which a signal can be simultaneously concentrated in
both time and frequency. The answer is related to
the linear prolate spheroidal functions (LPSf's). They
maximize the proportion

� =

+
R
�


jX(f)j2df
+1R
�1

jX(f)j2df
;

where

X(f) :=

+TZ
�T

x(t)e�j!tdt:

LPSF's �n(c; t) are a set of bandlimited functions con-
structed to be invariant to the Fourier transform and
orthogonal on the real line for the given bandwidth 
 :

+1Z
�1

�n(c; t)e
�j!tdt =



=

(
i�n

q
2�T

�n

�n(c; !T=
); j!j � 
;

0; j!j � 
;

+1Z
�1

�n(c; t)�k(c; t)dt =

�
1; n = k;
0; n 6= k

and simultaneously to be invariant to the Fourier trans-
form and orthogonal over a �nite interval [+T;�T ] :

TZ
�T

sin
(t� �)

�(t� �)
�n(c; �)d� = �n�n(c; t);

+TZ
�T

Phin(c; t)�k(c; t)dt =

�
�n; n = k;
0; n 6= k;

where �n(c; t) denotes the LPSF of order n and the
number of degrees of freedom c = T
; �n(c) are the (in-
tegral) linear prolate eigenvalues 1 > �o(c) > �1(c) >
� � � :

These unique properties make LPSF's useful insignal
processing. In particular, any square{integrable func-
tion f(t) of bandwidth 
 known in the basic interval
[�T; T ] can be extrapolated to in�nity by the series

f(t) =

1X
n=0

an(c)�n(c; t); t 2 (�1;+1)

where an(c) are calculated from f(t) in the basic inter-
val

an(c) :=
1

�n(c)

+TZ
�T

f(t)�n(c; t)dt:

This approach is widely used. e.g., to achieve super{
resolution in optical image reconstruction [5],[6].

Let �(
) and �(
�) are characteristic functions of
the subsets 
 and 
�; respectively and let

X := diag(�(
)); X � := diag(�(
�))

are (N �N){diagonal matrices.

De�nition 6 Operators

Fo := XFX �; F+
o := X �F�1X

will be called truncated direct and inverse generalized

Fourier transforms.

They belong to the class Hilbert{Shmidt operators.
Let

��l (n); n 2 
; ��k(�); � 2 
�;

(where l = 0; 1; 2; :::; L � 1; k = 0; 1; :::; L� � 1) are
eigen-functions of the operators F+

o Fo; FoF+
o :�F+

o Fo
�
��l (n) = �l�

�

l (n);
�FoF+

o

�
��l (�) = �l�

�

l (�)

that correspond to the eigenvalues �l: From this ex-
pressions we have

F+
o Fo =

X
l=0

�l�
�

l (n)�
�

l (m);

FoF+
o =

X
l+0

�l�
�

l (�)�
�

l (�);

or in matrix form

F+
o Fo =M��M�t; FoF+

o = N ��N �t;

where M� := [��l (n)]; N � := [��k(�)]: Obviously,

F0 =
X
l=0

�1=2��l (n)�
�

l (�);

F+
0 =

X
l=0

�1=2��k(�)�
�

k(n);

or in matrix form

Fo = N ��1=2M�t; F+
o =M��1=2N �t

are singular decompositions of transforms Fo and F+
0 ;

respectively
Note that the supports of �l(n); �l(�) are the trans-

parency (l � L){ and (L� � L�){windows 
;
�:
Consider new function systems:

�l(n) := F�1��l (�); �l(�) := F��l (n):
Domains K and K� are their supports.

Transforms operators in the basis

�l(n); n 2 
; �l(�); � 2 
�;

will be denoted as M and N : Surely,

N = FM�; M = F�1N �:

Theorem 1 Functions �l(n); �l(�) are orthonormal-
ized on K and K� :X

n2K

�l1(n)�l2(n) = �l1l2 ; orMMt = I;

X
�2K�

�l1(�)�l2 (�) = �l1l2 ; or NN t = I

and orthogonal on the transparency windows 
;
� :X
n2


�l1(n)�l2(n) = �l1�l1l2 ; or MXMt = �;

X
�2
�

�l1(�)�l2 (�) = �l1�l1l2 or NX �N t = �;

where � = diag(�l); "
t" is symbol of transpose.



De�nition 7 Functions �l(n); �l(�) will be called gen-
eralized F{functions with double orthogonality or Gen-
eralized Prolate Spheroidal Functions [2],[4]

It must be mentioned that

�(
)�l(n) = �1=2��l (n); �(

�)�l(�) = �1=2��l (�);

or in operator form

MX = �M�; NX � = �N �:

4. RECONSTRUCTION WITH

SUPER-RESOLUTION

Let s be a signal with �nite spectrum or �nite cep-
strum. Then estimationsbsN = F�1SL; bsN = F�1 �f�1 fFfCEPL(s)gg

	
contains information about the spectrum of initial im-
age sN only in the transparency spectrum domain 
�

and space domain 
 and has not information outside.
For its reconstruction we extrapolate the truncated spec-
trum and cepstrum on the whole spectralK� and space
K domains, respectively, using the functions with dou-
ble orthogonality

S
ext
N =

�N��1N t
�
SL;

and
CEPextN =

�M��1Mt
�
CEPL:

Then we reconstruct the initial image from SextN or
CEPextNbssupN = F�1SextN = F�1 ��N��1N t

�
SL

	
;

bssupN = F�1 �f�1 fFfCEPexp
N (s)gg	 =

= F�1 �f�1 �Ff�M��1M+
�
CEPL(s)g

		
:

As an extrapolation reconstructionmissing spectral and
cepstral samples then the image bssupN unlike bsN is re-
constructed including all its "�ne details" that can be
treated as super-resolution e�ect.

If noise there is in communication channel then the
truncated and distorted spectrum Sl +Nl appears at
the receiving side. In this case reconstruction with
supper-resolution must be realized in the basis �l(n)
for spectral reconstruction and in the basis �l(�) for
cepstral reconstruction with using optimal Wiener �l-
tration in these bases:bsWin;sup

N = F�1 ��N�Wien
spec N+

�
SL

	
;

bsWin;sup
N =

= F�1 �f�1 �Ff�M�Wien
cep M+

�
CEPL(s)g

		
;

where �Wien
spec ; �Wien

cep are transfer (frequency system)
function of optimal Wiener �lter in the bases �l(n)
�l(�); respectively.
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