FAST BILINEAR ALGORITHMS FOR IMAGE COMPRESSION AND
RECONSTRUCTION WITH SUPER-RESOLUTION

E. Rundblad, V. Labunets

Tampere University of Technology
Signal Processing Lab.,
Tampere, Finland
e-mail: lab@cs.tut.fi

ABSTRACT

A wide class of fast image compression algorithms are
elaborated in this paper. Proposed technique differ
from the known spectral algorithms so that it trun-
cates generalized cepstrum rather than spectrum to-
gether with additional information on spectrum phase
for increasing of compression rate.

1. INTRODUCTION

Modern video information registration and transmis-
sion systems are characterized by high rate of input
information flow and large volumes of accumulated in-
formation. Such situation generates serious problems
especially when data are transmitted in real time and
in a limited frequency band. Hence a problem of reduc-
tion of redundancy of the processed space—time signals
is very practically actual.

The source of statistical redundancy of an image
is a high correlation of its samples. For its reduction
(N x N)-sample image sy is transformed using 2-D
unitary transform (UT)

SN = .7:SN

which partially decorrelates the samples of the image.
The essence of linear compression is the following: the
most ”powerful” L? < N? spectral samples

are transmitted through the telemetric channel (instead
of N? initial samples), where x(Q) is characteristic
function of transparency (L x L)-window.

Image estimation is made in reverse order:

Sy = .7:715[/.

This algorithm of compression and reconstruction is
sufficiently well studied and investigated now for a wide

class of unitary transforms: Fourier, Walsh transforms,
cosine, sine transforms etc. They are called linear spec-
tral algorithms of compression.

The total decorrelation (and hence maximal com-
pression) is achieved by Karhunen-Loeve transform.
But KLT has no fast algorithm. Hence in practice it
is changed by a unitary transforms having fast algo-
rithms. The gain of speed is accompanied with the loss
of quality of the reconstructed image.

To overcome this shortcoming (especially for wide—
band images) the present paper suggest

e fast bilinear generalized auto-correlation and cep-
strum compression algorithms,

e methods of extrapolation of the received trun-
cated spectrum Sy, that would allow to realize
fast linear and bilinear algorithms of reconstruc-
tion with super-resolution of compression image.

2. FAST BILINEAR GENERALIZED
AUTO-CORRELATION AND CEPSTRUM
COMPRESSION ALGORITHMS

Let K:=[0,N —1] x [0, N —1] and K* := [0, N — 1] x
[0, N — 1] are two examples of rectangular (N x N)-
point subset of the set Z? := Z x Z. The first of them
will be called a space (spatial) domain and the second
one - — a F-spectrum domain. Let us consider images
as functions of brightness of the form

sy(n) : K — RT,

where n := (n1,ns) € K C Z2, R7 is the set of positive
numbers.
The space of images will be denoted as

L2(K,R+) = {SN | sy : K — R+} .
We introduce an arbitrary orthogonal basis

ba(n) € Ly(K,RY),



where n := (n1,n2) € K, a = (a1,a2) € K*. Then
any image can be decomposed in generalized Fourier
series in this basis

sn(n) = Y Sn(@)da(n),

acK*
where _
SN(a) = Z SN(a)QSa(n))
nekK
or in matrix notation
SN:]:_IS, Sy = Fs.

This expressions are called generalized inverse and di-
rect Fourier transforms.

Definition 1 Image s} that takes nonzero values in
some (L x L)- point subset Q € K of the space domain
K will be called image with finite support (= finite im-
age).

Definition 2 Image s the spectrum S of which takes
nonzero values in some (L* x L*)-point subset Q* € K*
of the spectrum domain K* will be called image with
finite spectrum.

Definition 3 Generalized F—auto-correlation function
(F-ACF) of the image sy is called an expression

CORn{sn} := F ' {|F{sn}*} = F ' {ISnI’}.

If the F is Fourier transform then COR is classi-
cal (arithmetic) auto-correlation function, if the F is
Walsh transform then COR is dyadic (logical) auto-
correlation function etc.

Definition 4 Generalized (F, f)—cepstrum of image sy
is called an expression

CEPn{sn} :=F ' {f (F{sn})}.

Surely, in the case when pair (F, f) is the Fourier
transform and a square, then CEP = COR, if it is
Fourier transform and f = log, then CEP is classical
cepstrum. In all another cases we obtained a gener-
alized auto-correlation functions or a generalized cep-
strum.

Definition 5 Image sy the cepstrum CEPj{sy} of
which takes nonzero values in some (L x L)—point sub-
set 2 € K of the space domain K will be called image
with finite cepstrum.

Let us suppose that f is whitening function (type
log, Vo etc), that is, a function equalizing a spectrum
in the spectral domain of generalized frequencies 2*.

In this case CEPny{s} (or CORy{s} as special case of
CEP) will be of a small localization, despite of the ini-
tial signal spectrum Sy width. This fact give a possible
to truncate CEPy, to L2 << N2 samples (where L? :=
Card(02*) is cardinality of the subset Q*) and their
transition along the communication channels. This al-
low obtain the compression coefficient K.omp = N/L.
At the receiving side reconstruction is realized in the
inverse order:

Sy = F L {fH{F{CEP,(s)}}}

if the function f doesn’t destruct information about the
spectrum phase. In opposite case it must be compen-
sated by the transmission of the phase ®x := arg(Sy)

along the communication channel together with CEPf (S).

In this case the reconstruction algorithm becomes of
the form:

S £ (S FCER O]

In particular, when f = f~! = 1, and F is orthogo-
nal transform, we obtain the image compression and
reconstruction algorithm basing on image F—spectrum
phase:

Sy =F ' ey} = F ! {sign(Sn)}

that asks for compression one bit per one pixel of image.

3. GENERALIZED FUNCTIONS WITH
DOUBLE ORTHOGONALITY

In [2], Slepian addressed the quation of the extent to
which a signal can be simultaneously concentrated in
both time and frequency. The answer is related to
the linear prolate spheroidal functions (LPSf’s). They
maximize the proportion

+Q
[ 1X(f))Pdf
—Q
A= -i-ooi’
X
where o
X(f):= [ z(t)e Itat.
/

LPSF’s ®,,(c,t) are a set of bandlimited functions con-
structed to be invariant to the Fourier transform and
orthogonal on the real line for the given bandwidth  :
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and simultaneously to be invariant to the Fourier trans-
form and orthogonal over a finite interval [+7', =T :

T
Al
/ w@n(c, T)dT = Anq)n(ca t)v
(t — 1)
+T
/Phin(c,t)tbk(c,t)dt - { o Z;IZ
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where ®,(c,t) denotes the LPSF of order n and the
number of degrees of freedom ¢ = T'Q2, A, (c) are the (in-
tegral) linear prolate eigenvalues 1 > A,(¢) > A;(c) >

These unique properties make LPSF’s useful insignal
processing. In particular, any square—integrable func-
tion f(t) of bandwidth © known in the basic interval
[-T,T] can be extrapolated to infinity by the series

= Z an(c)®y(c,t)

where a,,(c) are calculated from f(t) in the basic inter-
val

t € (—o0, +00)

This approach is widely used. e.g., to achieve super—
resolution in optical image reconstruction [5],[6].

Let x(92) and x(Q*) are characteristic functions of
the subsets 2 and Q*, respectively and let

X = diag(x(Q), A" = diag(x(2)

are (N x N)-diagonal matrices.

Definition 6 Operators
F,:=XFX*, Ff=x"F'X

will be called truncated direct and inverse generalized
Fourier transforms.

They belong to the class Hilbert-Shmidt operators.
Let

pr(n), n €Q, npla), @€,

(where I = 0,1,2,...L -1, k = 0,1,...,L* —
eigen-functions of the operators FF F,, FoF; :
(Fo Fo) i (n) = puui (n), - (FoTF5) mi () = pu ()

that correspond to the eigenvalues p;. From this ex-
pressions we have

FiFo = ppf(n)
=0

FF="pmf ()] (B)
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1) are

Jug (m),

or in matrix form
fijZM.AM.t, ‘7_-0‘7_-0+ :NOANOt,
where M*® := [uf (n)], N° := [v}(a)]. Obviously,

Zpl/Q - )
Zpl/Z o o ),

or in matrix form

fo — NOA1/2M.t, + M0A1/2Not

are singular decompositions of transforms F, and .7-'0+ ,
respectively
Note that the supports of u;(n),n(«) are the trans-
parency (I x L)- and (L* x L*)-windows 2, Q*.
Consider new function systems:

Fohni(a), mla) = Fpp(n).

Domains K and K* are their supports.
Transforms operators in the basis

i (n) =

:ul(n)) nEQ; 77!(04), CKEQ*,
will be denoted as M and N. Surely,
N=FM*, M=F'N°.

Theorem 1 Functions py(n),m(a) are orthonormal-
ized on K and K* :

Z ,U'l1 /1'12

neK

Z 7711 7712

acK*

= 51112, or MMt = [,

51112, OI'NNt =1

and orthogonal on the transparency windows 2, Q* :

Z /1'11 :U’l2

neQ

Z 77l1 7712

aEeQ*

- pl16l1l27 or MXMt =

= p11511l2 or NX*Nt =

» t»

where A = diag(p;), is symbol of transpose.



Definition 7 Functions p;(n),n (a) will be called gen-
eralized F—functions with double orthogonality or Gen-
eralized Prolate Spheroidal Functions [2],[4]

It must be mentioned that
X( Q)i (n) = p2uf (n), x()m(a) = p/*5f (),
or in operator form

MX = AM®, NX* = AN°.
4. RECONSTRUCTION WITH
SUPER-RESOLUTION

Let s be a signal with finite spectrum or finite cep-
strum. Then estimations

Sy =F"'Sy, sy=F"'{f'{F{CEPL(s)}}}

contains information about the spectrum of initial im-
age sy only in the transparency spectrum domain Q*
and space domain € and has not information outside.
For its reconstruction we extrapolate the truncated spec-
trum and cepstrum on the whole spectral K* and space
K domains, respectively, using the functions with dou-
ble orthogonality

S = (WATINY) Sy,
and
CEPY' = (MA ' M) CEP,.
Then we reconstruct the initial image from S$¥! or
CEPS*!
sy =F ISPt = F T {(WATINY) S},
sy’ = FH{fTH{F{CEPY"(s)}}} =
=FH{fH{F{(MATIMT) CEPL(s)}}} .
As an extrapolation reconstruction missing spectral and
cepstral samples then the image s3/¥ unlike Sy is re-
constructed including all its ”fine details” that can be
treated as super-resolution effect.

If noise there is in communication channel then the
truncated and distorted spectrum S; + IN; appears at
the receiving side. In this case reconstruction with
supper-resolution must be realized in the basis n;(n)
for spectral reconstruction and in the basis y;(a) for

cepstral reconstruction with using optimal Wiener fil-
tration in these bases:

Sy = FIH(NAGETNT) Si
/s\]V\Ir/in,sup —
= F T H{F{(MAL MT) CEPL(s)}} }

Wien Wien
where Ag :C", Ag, " are transfer (frequency system)

function of optimal Wiener filter in the bases n;(n)
(), respectively.
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